Lamb Wave Wireless Communication in Healthy Plates Using Coherent Demodulation

Guided ultrasonic waves are used in Non-Destructive Testing and Structural Health Monitoring for inspection and damage detection. Recently, wireless data transmission using ultrasonic waves in solid metallic channels has gained popularity in some industrial applications such as nuclear, aerospace and smart vehicles. The idea is to find a good substitute for electromagnetic waves since they are highly attenuated near metallic components due to Faraday shielding. The proposed solution is to use ultrasonic guided waves such as Lamb waves as an information carrier due to their capability of propagation for long distances. In addition to this, valuable information about the health of the structure could be extracted simultaneously. In this work, the reliable frequency bandwidth for communication is extracted experimentally from dispersion curves at first. Then, an experimental platform for wireless communication using Lamb waves is described and built. After this, coherent demodulation algorithm used in telecommunications is tested for Amplitude Shift Keying, On-Off Keying and Binary Phase Shift Keying modulation techniques. Signal processing parameters such as threshold choice, number of cycles per bit and Bit Rate are optimized. Experimental results are compared based on the average bit error percentage. Results has shown high sensitivity to threshold selection for Amplitude Shift Keying and On-Off Keying techniques resulting a Bit Rate decrease. Binary Phase Shift Keying technique shows the highest stability and data rate between all tested modulation techniques.

Time and Wavelength Division Multiplexing Passive Optical Network Comparative Analysis: Modulation Formats and Channel Spacings

In light of the substantial increase in end-user requirements and the incessant need of network operators to upgrade the capabilities of access networks, in this paper, the performance of the different modulation formats on eight-channels Time and Wavelength Division Multiplexing Passive Optical Network (TWDM-PON) transmission system has been examined and compared. Limitations and features of modulation formats have been determined to outline the most suitable design to enhance the data rate and transmission reach to obtain the best performance of the network. The considered modulation formats are On-Off Keying Non-Return-to-Zero (NRZ-OOK), Carrier Suppressed Return to Zero (CSRZ), Duo Binary (DB), Modified Duo Binary (MODB), Quadrature Phase Shift Keying (QPSK), and Differential Quadrature Phase Shift Keying (DQPSK). The performance has been analyzed by varying transmission distances and bit rates under different channel spacing. Furthermore, the system is evaluated in terms of minimum Bit Error Rate (BER) and Quality factor (Qf) without applying any dispersion compensation technique, or any optical amplifier. Optisystem software was used for simulation purposes.

Enhancing the Performance of H.264/AVC in Adaptive Group of Pictures Mode Using Octagon and Square Search Pattern

This paper integrates Octagon and Square Search pattern (OCTSS) motion estimation algorithm into H.264/AVC (Advanced Video Coding) video codec in Adaptive Group of Pictures (AGOP) mode. AGOP structure is computed based on scene change in the video sequence. Octagon and square search pattern block-based motion estimation method is implemented in inter-prediction process of H.264/AVC. Both these methods reduce bit rate and computational complexity while maintaining the quality of the video sequence respectively. Experiments are conducted for different types of video sequence. The results substantially proved that the bit rate, computation time and PSNR gain achieved by the proposed method is better than the existing H.264/AVC with fixed GOP and AGOP. With a marginal gain in quality of 0.28dB and average gain in bitrate of 132.87kbps, the proposed method reduces the average computation time by 27.31 minutes when compared to the existing state-of-art H.264/AVC video codec.

High Speed Video Transmission for Telemedicine using ATM Technology

In this paper, we study statistical multiplexing of VBR video in ATM networks. ATM promises to provide high speed realtime multi-point to central video transmission for telemedicine applications in rural hospitals and in emergency medical services. Video coders are known to produce variable bit rate (VBR) signals and the effects of aggregating these VBR signals need to be determined in order to design a telemedicine network infrastructure capable of carrying these signals. We first model the VBR video signal and simulate it using a generic continuous-data autoregressive (AR) scheme. We carry out the queueing analysis by the Fluid Approximation Model (FAM) and the Markov Modulated Poisson Process (MMPP). The study has shown a trade off: multiplexing VBR signals reduces burstiness and improves resource utilization, however, the buffer size needs to be increased with an associated economic cost. We also show that the MMPP model and the Fluid Approximation model fit best, respectively, the cell region and the burst region. Therefore, a hybrid MMPP and FAM completely characterizes the overall performance of the ATM statistical multiplexer. The ramifications of this technology are clear: speed, reliability (lower loss rate and jitter), and increased capacity in video transmission for telemedicine. With migration to full IP-based networks still a long way to achieving both high speed and high quality of service, the proposed ATM architecture will remain of significant use for telemedicine.

A Performance Comparison of Golay and Reed-Muller Coded OFDM Signal for Peak-to-Average Power Ratio Reduction

Multicarrier transmission system such as Orthogonal Frequency Division Multiplexing (OFDM) is a promising technique for high bit rate transmission in wireless communication systems. OFDM is a spectrally efficient modulation technique that can achieve high speed data transmission over multipath fading channels without the need for powerful equalization techniques. A major drawback of OFDM is the high Peak-to-Average Power Ratio (PAPR) of the transmit signal which can significantly impact the performance of the power amplifier. In this paper we have compared the PAPR reduction performance of Golay and Reed-Muller coded OFDM signal. From our simulation it has been found that the PAPR reduction performance of Golay coded OFDM is better than the Reed-Muller coded OFDM signal. Moreover, for the optimum PAPR reduction performance, code configuration for Golay and Reed-Muller codes has been identified.

The Impact of Self-Phase Modulation on Dispersion Compensated Mapping Multiplexing Technique (MMT)

An exploration in the competency of the optical multilevel Mapping Multiplexing Technique (MMT) system in tolerating to the impact of nonlinearities as Self Phase Modulation (SPM) during the presence of dispersion compensation methods. The existence of high energy pulses stimulates deterioration in the chirp compression process attained by SPM which introduces an upper power boundary limit. An evaluation of the post and asymmetric prepost fiber compensation methods have been deployed on the MMT system compared with others of the same bit rate modulation formats. The MMT 40 Gb/s post compensation system has 1.4 dB enhancements to the 40 Gb/s 4-Arysystem and less than 3.9 dB penalty compared to the 40 Gb/s OOK-RZsystem. However, the optimized Pre-Post asymmetric compensation has an enhancement of 4.6 dB compared to the Post compensation MMT configuration for a 30% pre compensation dispersion.

Statistical Distributions of the Lapped Transform Coefficients for Images

Discrete Cosine Transform (DCT) based transform coding is very popular in image, video and speech compression due to its good energy compaction and decorrelating properties. However, at low bit rates, the reconstructed images generally suffer from visually annoying blocking artifacts as a result of coarse quantization. Lapped transform was proposed as an alternative to the DCT with reduced blocking artifacts and increased coding gain. Lapped transforms are popular for their good performance, robustness against oversmoothing and availability of fast implementation algorithms. However, there is no proper study reported in the literature regarding the statistical distributions of block Lapped Orthogonal Transform (LOT) and Lapped Biorthogonal Transform (LBT) coefficients. This study performs two goodness-of-fit tests, the Kolmogorov-Smirnov (KS) test and the 2- test, to determine the distribution that best fits the LOT and LBT coefficients. The experimental results show that the distribution of a majority of the significant AC coefficients can be modeled by the Generalized Gaussian distribution. The knowledge of the statistical distribution of transform coefficients greatly helps in the design of optimal quantizers that may lead to minimum distortion and hence achieve optimal coding efficiency.

A Perceptual Image Coding method of High Compression Rate

In the framework of the image compression by Wavelet Transforms, we propose a perceptual method by incorporating Human Visual System (HVS) characteristics in the quantization stage. Indeed, human eyes haven-t an equal sensitivity across the frequency bandwidth. Therefore, the clarity of the reconstructed images can be improved by weighting the quantization according to the Contrast Sensitivity Function (CSF). The visual artifact at low bit rate is minimized. To evaluate our method, we use the Peak Signal to Noise Ratio (PSNR) and a new evaluating criteria witch takes into account visual criteria. The experimental results illustrate that our technique shows improvement on image quality at the same compression ratio.

New Approach to Spectral Analysis of High Bit Rate PCM Signals

Pulse code modulation is a widespread technique in digital communication with significant impact on existing modern and proposed future communication technologies. Its widespread utilization is due to its simplicity and attractive spectral characteristics. In this paper, we present a new approach to the spectral analysis of PCM signals using Riemann-Stieltjes integrals, which is very accurate for high bit rates. This approach can serve as a model for similar spectral analysis of other competing modulation schemes.

MJPEG Real-Time Transmission in Industrial Environments Using a CBR Channel

Currently, there are many local area industrial networks that can give guaranteed bandwidth to synchronous traffic, particularly providing CBR channels (Constant Bit Rate), which allow improved bandwidth management. Some of such networks operate over Ethernet, delivering channels with enough capacity, specially with compressors, to integrate multimedia traffic in industrial monitoring and image processing applications with many sources. In these industrial environments where a low latency is an essential requirement, JPEG is an adequate compressing technique but it generates VBR traffic (Variable Bit Rate). Transmitting VBR traffic in CBR channels is inefficient and current solutions to this problem significantly increase the latency or further degrade the quality. In this paper an R(q) model is used which allows on-line calculation of the JPEG quantification factor. We obtained increased quality, a lower requirement for the CBR channel with reduced number of discarded frames along with better use of the channel bandwidth.

Bangla Vowel Characterization Based on Analysis by Synthesis

Bangla Vowel characterization determines the spectral properties of Bangla vowels for efficient synthesis as well as recognition of Bangla vowels. In this paper, Bangla vowels in isolated word have been analyzed based on speech production model within the framework of Analysis-by-Synthesis. This has led to the extraction of spectral parameters for the production model in order to produce different Bangla vowel sounds. The real and synthetic spectra are compared and a weighted square error has been computed along with the error in the formant bandwidths for efficient representation of Bangla vowels. The extracted features produced good representation of targeted Bangla vowel. Such a representation also plays essential role in low bit rate speech coding and vocoders.

Bit-Error-Rate Performance Analysis of an Overlap-based CSS System

In a chirp spread spectrum (CSS) system, the overlap technique is used for increasing bit rate. More overlaps can offer higher data throughput; however, they may cause more intersymbol interference (ISI) at the same time, resulting in serious bit error rate (BER) performance degradation. In this paper, we perform the BER analysis and derive a closed form BER expression for the overlap-based CSS system. The derived BER expression includes the number of overlaps as a parameter, and thus, would be very useful in determining the number of overlaps for a specified BER. The numerical results demonstrate that the BER derived in a closed form closely agrees with the simulated BER.

Adaptive Group of Pictures Structure Based On the Positions of Video Cuts

In this paper we propose a method which improves the efficiency of video coding. Our method combines an adaptive GOP (group of pictures) structure and the shot cut detection. We have analyzed different approaches for shot cut detection with aim to choose the most appropriate one. The next step is to situate N frames to the positions of detected cuts during the process of video encoding. Finally the efficiency of the proposed method is confirmed by simulations and the obtained results are compared with fixed GOP structures of sizes 4, 8, 12, 16, 32, 64, 128 and GOP structure with length of entire video. Proposed method achieved the gain in bit rate from 0.37% to 50.59%, while providing PSNR (Peak Signal-to-Noise Ratio) gain from 1.33% to 0.26% in comparison to simulated fixed GOP structures.

Watermark Bit Rate in Diverse Signal Domains

A study of the obtainable watermark data rate for information hiding algorithms is presented in this paper. As the perceptual entropy for wideband monophonic audio signals is in the range of four to five bits per sample, a significant amount of additional information can be inserted into signal without causing any perceptual distortion. Experimental results showed that transform domain watermark embedding outperforms considerably watermark embedding in time domain and that signal decompositions with a high gain of transform coding, like the wavelet transform, are the most suitable for high data rate information hiding. Keywords?Digital watermarking, information hiding, audio watermarking, watermark data rate.

Quality Evaluation of Compressed MRI Medical Images for Telemedicine Applications

Medical image modalities such as computed tomography (CT), magnetic resonance imaging (MRI), ultrasound (US), X-ray are adapted to diagnose disease. These modalities provide flexible means of reviewing anatomical cross-sections and physiological state in different parts of the human body. The raw medical images have a huge file size and need large storage requirements. So it should be such a way to reduce the size of those image files to be valid for telemedicine applications. Thus the image compression is a key factor to reduce the bit rate for transmission or storage while maintaining an acceptable reproduction quality, but it is natural to rise the question of how much an image can be compressed and still preserve sufficient information for a given clinical application. Many techniques for achieving data compression have been introduced. In this study, three different MRI modalities which are Brain, Spine and Knee have been compressed and reconstructed using wavelet transform. Subjective and objective evaluation has been done to investigate the clinical information quality of the compressed images. For the objective evaluation, the results show that the PSNR which indicates the quality of the reconstructed image is ranging from (21.95 dB to 30.80 dB, 27.25 dB to 35.75 dB, and 26.93 dB to 34.93 dB) for Brain, Spine, and Knee respectively. For the subjective evaluation test, the results show that the compression ratio of 40:1 was acceptable for brain image, whereas for spine and knee images 50:1 was acceptable.

Perceptual JPEG Compliant Coding by Using DCT-Based Visibility Thresholds of Color Images

Effective estimation of just noticeable distortion (JND) for images is helpful to increase the efficiency of a compression algorithm in which both the statistical redundancy and the perceptual redundancy should be accurately removed. In this paper, we design a DCT-based model for estimating JND profiles of color images. Based on a mathematical model of measuring the base detection threshold for each DCT coefficient in the color component of color images, the luminance masking adjustment, the contrast masking adjustment, and the cross masking adjustment are utilized for luminance component, and the variance-based masking adjustment based on the coefficient variation in the block is proposed for chrominance components. In order to verify the proposed model, the JND estimator is incorporated into the conventional JPEG coder to improve the compression performance. A subjective and fair viewing test is designed to evaluate the visual quality of the coding image under the specified viewing condition. The simulation results show that the JPEG coder integrated with the proposed DCT-based JND model gives better coding bit rates at visually lossless quality for a variety of color images.

Mitigation of ISI for Next Generation Wireless Channels in Outdoor Vehicular Environments

In order to accommodate various multimedia services, next generation wireless networks are characterized by very high transmission bit rates. Thus, in such systems and networks, the received signal is not only limited by noise but - especially with increasing symbols rate often more significantly by the intersymbol interference (ISI) caused by the time dispersive radio channels such as those are used in this work. This paper deals with the study of the performance of detector for high bit rate transmission on some worst case models of frequency selective fading channels for outdoor mobile radio environments. This paper deals with a number of different wireless channels with different power profiles and different number of resolvable paths. All the radio channels generated in this paper are for outdoor vehicular environments with Doppler spread of 100 Hz. A carrier frequency of 1800 MHz is used and all the channels used in this work are such that they are useful for next generation wireless systems. Schemes for mitigation of ISI with adaptive equalizers of different types have been investigated and their performances have been investigated in terms of BER measured as a function of SNR.

Effect of Peak-to-Average Power Ratio Reduction on the Multicarrier Communication System Performance Parameters

Multicarrier transmission system such as Orthogonal Frequency Division Multiplexing (OFDM) is a promising technique for high bit rate transmission in wireless communication system. OFDM is a spectrally efficient modulation technique that can achieve high speed data transmission over multipath fading channels without the need for powerful equalization techniques. However the price paid for this high spectral efficiency and less intensive equalization is low power efficiency. OFDM signals are very sensitive to nonlinear effects due to the high Peak-to-Average Power Ratio (PAPR), which leads to the power inefficiency in the RF section of the transmitter. This paper investigates the effect of PAPR reduction on the performance parameter of multicarrier communication system. Performance parameters considered are power consumption of Power Amplifier (PA) and Digital-to-Analog Converter (DAC), power amplifier efficiency, SNR of DAC and BER performance of the system. From our analysis it is found that irrespective of PAPR reduction technique being employed, the power consumption of PA and DAC reduces and power amplifier efficiency increases due to reduction in PAPR. Moreover, it has been shown that for a given BER performance the requirement of Input-Backoff (IBO) reduces with reduction in PAPR.

A Microstrip Antenna Design and Performance Analysis for RFID High Bit Rate Applications

Lately, an interest has grown greatly in the usages of RFID in an un-presidential applications. It is shown in the adaptation of major software companies such as Microsoft, IBM, and Oracle the RFID capabilities in their major software products. For example Microsoft SharePoints 2010 workflow is now fully compatible with RFID platform. In addition, Microsoft BizTalk server is also capable of all RFID sensors data acquisition. This will lead to applications that required high bit rate, long range and a multimedia content in nature. Higher frequencies of operation have been designated for RFID tags, among them are the 2.45 and 5.8 GHz. The higher the frequency means higher range, and higher bit rate, but the drawback is the greater cost. In this paper we present a single layer, low profile patch antenna operates at 5.8 GHz with pure resistive input impedance of 50 and close to directive radiation. Also, we propose a modification to the design in order to improve the operation band width from 8.7 to 13.8

Modified Vector Quantization Method for Image Compression

A low bit rate still image compression scheme by compressing the indices of Vector Quantization (VQ) and generating residual codebook is proposed. The indices of VQ are compressed by exploiting correlation among image blocks, which reduces the bit per index. A residual codebook similar to VQ codebook is generated that represents the distortion produced in VQ. Using this residual codebook the distortion in the reconstructed image is removed, thereby increasing the image quality. Our scheme combines these two methods. Experimental results on standard image Lena show that our scheme can give a reconstructed image with a PSNR value of 31.6 db at 0.396 bits per pixel. Our scheme is also faster than the existing VQ variants.