An Intelligent Approach of Rough Set in Knowledge Discovery Databases

Knowledge Discovery in Databases (KDD) has evolved into an important and active area of research because of theoretical challenges and practical applications associated with the problem of discovering (or extracting) interesting and previously unknown knowledge from very large real-world databases. Rough Set Theory (RST) is a mathematical formalism for representing uncertainty that can be considered an extension of the classical set theory. It has been used in many different research areas, including those related to inductive machine learning and reduction of knowledge in knowledge-based systems. One important concept related to RST is that of a rough relation. In this paper we presented the current status of research on applying rough set theory to KDD, which will be helpful for handle the characteristics of real-world databases. The main aim is to show how rough set and rough set analysis can be effectively used to extract knowledge from large databases.

Evaluation of the Impact of Dataset Characteristics for Classification Problems in Biological Applications

Availability of high dimensional biological datasets such as from gene expression, proteomic, and metabolic experiments can be leveraged for the diagnosis and prognosis of diseases. Many classification methods in this area have been studied to predict disease states and separate between predefined classes such as patients with a special disease versus healthy controls. However, most of the existing research only focuses on a specific dataset. There is a lack of generic comparison between classifiers, which might provide a guideline for biologists or bioinformaticians to select the proper algorithm for new datasets. In this study, we compare the performance of popular classifiers, which are Support Vector Machine (SVM), Logistic Regression, k-Nearest Neighbor (k-NN), Naive Bayes, Decision Tree, and Random Forest based on mock datasets. We mimic common biological scenarios simulating various proportions of real discriminating biomarkers and different effect sizes thereof. The result shows that SVM performs quite stable and reaches a higher AUC compared to other methods. This may be explained due to the ability of SVM to minimize the probability of error. Moreover, Decision Tree with its good applicability for diagnosis and prognosis shows good performance in our experimental setup. Logistic Regression and Random Forest, however, strongly depend on the ratio of discriminators and perform better when having a higher number of discriminators.

An Overview of Handoff Techniques in Cellular Networks

Continuation of an active call is one of the most important quality measurements in the cellular systems. Handoff process enables a cellular system to provide such a facility by transferring an active call from one cell to another. Different approaches are proposed and applied in order to achieve better handoff service. The principal parameters used to evaluate handoff techniques are: forced termination probability and call blocking probability. The mechanisms such as guard channels and queuing handoff calls decrease the forced termination probability while increasing the call blocking probability. In this paper we present an overview about the issues related to handoff initiation and decision and discuss about different types of handoff techniques available in the literature.

Mathematical Modeling for Dengue Transmission with the Effect of Season

Mathematical models can be used to describe the transmission of disease. Dengue disease is the most significant mosquito-borne viral disease of human. It now a leading cause of childhood deaths and hospitalizations in many countries. Variations in environmental conditions, especially seasonal climatic parameters, effect to the transmission of dengue viruses the dengue viruses and their principal mosquito vector, Aedes aegypti. A transmission model for dengue disease is discussed in this paper. We assume that the human and vector populations are constant. We showed that the local stability is completely determined by the threshold parameter, 0 B . If 0 B is less than one, the disease free equilibrium state is stable. If 0 B is more than one, a unique endemic equilibrium state exists and is stable. The numerical results are shown for the different values of the transmission probability from vector to human populations.

Spatial Mapping of Dengue Incidence: A Case Study in Hulu Langat District, Selangor, Malaysia

Dengue is a mosquito-borne infection that has peaked to an alarming rate in recent decades. It can be found in tropical and sub-tropical climate. In Malaysia, dengue has been declared as one of the national health threat to the public. This study aimed to map the spatial distributions of dengue cases in the district of Hulu Langat, Selangor via a combination of Geographic Information System (GIS) and spatial statistic tools. Data related to dengue was gathered from the various government health agencies. The location of dengue cases was geocoded using a handheld GPS Juno SB Trimble. A total of 197 dengue cases occurring in 2003 were used in this study. Those data then was aggregated into sub-district level and then converted into GIS format. The study also used population or demographic data as well as the boundary of Hulu Langat. To assess the spatial distribution of dengue cases three spatial statistics method (Moran-s I, average nearest neighborhood (ANN) and kernel density estimation) were applied together with spatial analysis in the GIS environment. Those three indices were used to analyze the spatial distribution and average distance of dengue incidence and to locate the hot spot of dengue cases. The results indicated that the dengue cases was clustered (p < 0.01) when analyze using Moran-s I with z scores 5.03. The results from ANN analysis showed that the average nearest neighbor ratio is less than 1 which is 0.518755 (p < 0.0001). From this result, we can expect the dengue cases pattern in Hulu Langat district is exhibiting a cluster pattern. The z-score for dengue incidence within the district is -13.0525 (p < 0.0001). It was also found that the significant spatial autocorrelation of dengue incidences occurs at an average distance of 380.81 meters (p < 0.0001). Several locations especially residential area also had been identified as the hot spots of dengue cases in the district.

Investigation Wintering And Breeding Habitat Selection by Asiatic Houbara Bustard (Chlamydotis macqueenii ) In Central Steppe of Iran

Asiatic Houbara ( Chlamydotis macqueenii ) is a flagship and vulnerable species. In-situ conservation of this threatened species demands for knowledge of its habitat selection. The aim of this study was to determine habitat variables influencing birds wintering and breeding selection in semi- arid central Iran. Habitat features of the detected nest and pellet sites were compared with paired and random plots by quantifying a number of habitat variables. In wintering habitat use at micro scale houbara selected sites where vegetation cover was significantly lower compard to control sites( p< 0.001). Areas with low number of larger plant species (p=0.03) that were not too close to a vegetation patch(p

A Multiclass BCMP Queueing Modeling and Simulation-Based Road Traffic Flow Analysis

Urban road network traffic has become one of the most studied research topics in the last decades. This is mainly due to the enlargement of the cities and the growing number of motor vehicles traveling in this road network. One of the most sensitive problems is to verify if the network is congestion-free. Another related problem is the automatic reconfiguration of the network without building new roads to alleviate congestions. These problems require an accurate model of the traffic to determine the steady state of the system. An alternative is to simulate the traffic to see if there are congestions and when and where they occur. One key issue is to find an adequate model for road intersections. Once the model established, either a large scale model is built or the intersection is represented by its performance measures and simulation for analysis. In both cases, it is important to seek the queueing model to represent the road intersection. In this paper, we propose to model the road intersection as a BCMP queueing network and we compare this analytical model against a simulation model for validation.

Using Weblog to Promote Critical Thinking – An Exploratory Study

Weblog is an Internet tool that is believed to possess great potential to facilitate learning in education. This study wants to know if weblog can be used to promote students- critical thinking. It used a group of secondary two students from a Singapore school to write weblogs as a means of substitution for their traditional handwritten assignments. The topics for the weblogging are taken from History syllabus but modified to suit the purpose of this study. Weblogs from the students were collected and analysed using a known coding system for measuring critical thinking. Results show that the topic for blogging is crucial in determining the types of critical thinking employed by the students. Students are seen to display critical thinking traits in the areas of information sourcing, linking information to arguments and viewpoints justification. Students- criticalness is more profound when the information for writing a topic is readily available. Otherwise, they tend to be less critical and subjective. The study also found that students lack the ability to source for external information suggesting that students may need to be taught information literacy in order to widen their use of critical thinking skills.

Routing in Mobile Wireless Networks for Realtime Multimedia Applications- Reuse of Virtual Circuits

Routing places an important role in determining the quality of service in wireless networks. The routing methods adopted in wireless networks have many drawbacks. This paper aims to review the current routing methods used in wireless networks. This paper proposes an innovative solution to overcome the problems in routing. This solution is aimed at improving the Quality of Service. This solution is different from others as it involves the resuage of the part of the virtual circuits. This improvement in quality of service is important especially in propagation of multimedia applications like video, animations etc. So it is the dire need to propose a new solution to improve the quality of service in ATM wireless networks for multimedia applications especially during this era of multimedia based applications.

Modeling of Catalyst Deactivation in Catalytic Wet Air Oxidation of Phenol in Fixed Bed Three-Phase Reactor

Modeling and simulation of fixed bed three-phase catalytic reactors are considered for wet air catalytic oxidation of phenol to perform a comparative numerical analysis between tricklebed and packed-bubble column reactors. The modeling involves material balances both for the catalyst particle as well as for different fluid phases. Catalyst deactivation is also considered in a transient reactor model to investigate the effects of various parameters including reactor temperature on catalyst deactivation. The simulation results indicated that packed-bubble columns were slightly superior in performance than trickle beds. It was also found that reaction temperature was the most effective parameter in catalyst deactivation.

Typical Day Prediction Model for Output Power and Energy Efficiency of a Grid-Connected Solar Photovoltaic System

A novel typical day prediction model have been built and validated by the measured data of a grid-connected solar photovoltaic (PV) system in Macau. Unlike conventional statistical method used by previous study on PV systems which get results by averaging nearby continuous points, the present typical day statistical method obtain the value at every minute in a typical day by averaging discontinuous points at the same minute in different days. This typical day statistical method based on discontinuous point averaging makes it possible for us to obtain the Gaussian shape dynamical distributions for solar irradiance and output power in a yearly or monthly typical day. Based on the yearly typical day statistical analysis results, the maximum possible accumulated output energy in a year with on site climate conditions and the corresponding optimal PV system running time are obtained. Periodic Gaussian shape prediction models for solar irradiance, output energy and system energy efficiency have been built and their coefficients have been determined based on the yearly, maximum and minimum monthly typical day Gaussian distribution parameters, which are obtained from iterations for minimum Root Mean Squared Deviation (RMSD). With the present model, the dynamical effects due to time difference in a day are kept and the day to day uncertainty due to weather changing are smoothed but still included. The periodic Gaussian shape correlations for solar irradiance, output power and system energy efficiency have been compared favorably with data of the PV system in Macau and proved to be an improvement than previous models.

A Materialized View Approach to Support Aggregation Operations over Long Periods in Sensor Networks

The increasing interest on processing data created by sensor networks has evolved into approaches to implement sensor networks as databases. The aggregation operator, which calculates a value from a large group of data such as computing averages or sums, etc. is an essential function that needs to be provided when implementing such sensor network databases. This work proposes to add the DURING clause into TinySQL to calculate values during a specific long period and suggests a way to implement the aggregation service in sensor networks by applying materialized view and incremental view maintenance techniques that is used in data warehouses. In sensor networks, data values are passed from child nodes to parent nodes and an aggregation value is computed at the root node. As such root nodes need to be memory efficient and low powered, it becomes a problem to recompute aggregate values from all past and current data. Therefore, applying incremental view maintenance techniques can reduce the memory consumption and support fast computation of aggregate values.

Mean Codeword Lengths and Their Correspondence with Entropy Measures

The objective of the present communication is to develop new genuine exponentiated mean codeword lengths and to study deeply the problem of correspondence between well known measures of entropy and mean codeword lengths. With the help of some standard measures of entropy, we have illustrated such a correspondence. In literature, we usually come across many inequalities which are frequently used in information theory. Keeping this idea in mind, we have developed such inequalities via coding theory approach.

The Impact of e-Learning and e-Teaching

With the exponential progress of technological development comes a strong sense that events are moving too quickly for our schools and that teachers may be losing control of them in the process. This paper examines the impact of e-learning and e-teaching in universities, from both the student and teacher perspective. In particular, it is shown that e-teachers should focus not only on the technical capacities and functions of IT materials and activities, but must attempt to more fully understand how their e-learners perceive the learning environment. From the e-learner perspective, this paper indicates that simply having IT tools available does not automatically translate into all students becoming effective learners. More evidence-based evaluative research is needed to allow e-learning and e-teaching to reach full potential.

A Study on the Developing Method of the BIM (Building Information Modeling) Software Based On Cloud Computing Environment

According as the Architecture, Engineering and Construction (AEC) Industry projects have grown more complex and larger, the number of utilization of BIM for 3D design and simulation is increasing significantly. Therefore, typical applications of BIM such as clash detection and alternative measures based on 3-dimenstional planning are expanded to process management, cost and quantity management, structural analysis, check for regulation, and various domains for virtual design and construction. Presently, commercial BIM software is operated on single-user environment, so initial cost is so high and the investment may be wasted frequently. Cloud computing that is a next-generation internet technology enables simple internet devices (such as PC, Tablet, Smart phone etc) to use services and resources of BIM software. In this paper, we suggested developing method of the BIM software based on cloud computing environment in order to expand utilization of BIM and reduce cost of BIM software. First, for the benchmarking, we surveyed successful case of BIM and cloud computing. And we analyzed needs and opportunities of BIM and cloud computing in AEC Industry. Finally, we suggested main functions of BIM software based on cloud computing environment and developed a simple prototype of cloud computing BIM software for basic BIM model viewing.

Virtual Prototyping and Operational Monitoring of PLC-Based Control System

As business environments are rapidly changing, the manufacturing system must be reconfigured to adapt to various customer needs. In order to cope with this challenge, it is quintessential to test industrial control logic rapidly and easily in the design time, and monitor operational behavior in the run time of automated manufacturing system. Proposed integrated model for virtual prototyping and operational monitoring of industrial control logic is to improve limitations of current ladder programming practices and general discrete event simulation method. Each plant layout model using HMI package and object-oriented control logic model is designed independently and is executed simultaneously in integrated manner to reflect design practices of automation system in the design time. Control logic is designed and executed using UML activity diagram without considering complicated control behavior to deal with current trend of reconfigurable manufacturing. After the physical installation, layout model of virtual prototype constructed in the design time is reused for operational monitoring of system behavior during run time.

On the Application of Meta-Design Techniques in Hardware Design Domain

System-level design based on high-level abstractions is becoming increasingly important in hardware and embedded system design. This paper analyzes meta-design techniques oriented at developing meta-programs and meta-models for well-understood domains. Meta-design techniques include meta-programming and meta-modeling. At the programming level of design process, metadesign means developing generic components that are usable in a wider context of application than original domain components. At the modeling level, meta-design means developing design patterns that describe general solutions to the common recurring design problems, and meta-models that describe the relationship between different types of design models and abstractions. The paper describes and evaluates the implementation of meta-design in hardware design domain using object-oriented and meta-programming techniques. The presented ideas are illustrated with a case study.

Performance Evaluation of a Diesel Engine Fueled with Methyl Ester of shea Butter

Biodiesel as an alternative fuel for diesel engines has been developed for some three decades now. While it is gaining wide acceptance in Europe, USA and some parts of Asia, the same cannot be said of Africa. With more than 35 countries in the continent depending on imported crude oil, it is necessary to look for alternative fuels which can be produced from resources available locally within any country. Hence this study presents performance of single cylinder diesel engine using blends of shea butter biodiesel. Shea butter was transformed into biodiesel by transesterification process. Tests are conducted to compare the biodiesel with baseline diesel fuel in terms of engine performance and exhaust emission characteristics. The results obtained showed that the addition of biodiesel to diesel fuel decreases the brake thermal efficiency (BTE) and increases the brake specific fuel consumption (BSFC). These results are expected due to the lower energy content of biodiesel fuel. On the other hand while the NOx emissions increased with increase in biodiesel content in the fuel blends, the emissions of carbon monoxide (CO), un-burnt hydrocarbon (UHC) and smoke opacity decreased. The engine performance which indicates that the biodiesel has properties and characteristics similar to diesel fuel and the reductions in exhaust emissions make shea butter biodiesel a viable additive or substitute to diesel fuel.

Parameters Estimation of Double Diode Solar Cell Model

A new technique based on Pattern search optimization is proposed for estimating different solar cell parameters in this paper. The estimated parameters are the generated photocurrent, saturation current, series resistance, shunt resistance, and ideality factor. The proposed approach is tested and validated using double diode model to show its potential. Performance of the developed approach is quite interesting which signifies its potential as a promising estimation tool.

Packaging the Alkaloids of Cinchona Bark in Combination with Etoposide in Polymeric Micelles Nanoparticles

Today, cancer remains one of the major diseases that lead to death. The main obstacle in chemotherapy as a main cancer treatment is the toxicity to normal cells due to Multidrug Resistance (MDR) after the use of anticancer drugs. Proposed solution to overcome this problem is the use of MDR efflux inhibitor of cinchona alkaloids which is delivered together with anticancer drugs encapsulated in the form of polymeric nanoparticles. The particles were prepared by the hydration method. The characterization of nanoparticles was particle size, zeta potential, entrapment efficiency and in vitro drug release. Combination nanoparticle size ranged 29-45 nm with a neutral surface charge. Entrapment efficiency was above 87% for the use quinine, quinidine or cinchonidine in combination with etoposide. The release test results exhibited that the cinchona alkaloids release released faster than that of etoposide. Collectively, cinchona alkaloids can be packaged along with etoposide in nanomicelles for better cancer therapy.