Media Regulation and Public Sphere in the Digital Age: An Analysis in the Light of Constructive Democracy

The article proposed intends to analyze the possibility (and conditions) of a media regulation law in a democratic rule of law in the twenty-first century. To do so, will be presented initially the idea of the public sphere (by Jürgen Habermas), showing how it is presented as an interface between the citizen and the state (or the private and public) and how important is it in a deliberative democracy. Based on this paradigm, the traditional perception of the role of public information (such as system functional element) and on the possibility of media regulation will be exposed, due to the public nature of their activity. A critical argument will then be displayed from two different perspectives: a) the formal function of the current media information, considering that the digital age has fragmented the information access; b) the concept of a constructive democracy, which reduces the need for representation, changing the strategic importance of the public sphere. The question to be addressed (based on the comparative law) is if the regulation is justified in a polycentric democracy, especially when it operates under the digital age (with immediate and virtual communication). The proposal is to be presented in the sense that even in a twenty-first century the media in a democratic rule of law still has an extremely important role and may be subject to regulation, but this should be on terms very different (and narrower) from those usually defended.

Structural Performance Evaluation of Segmented Wind Turbine Blade through Finite Element Simulation

Transportation of long turbine blades from one place to another is a difficult process. Hence a feasibility study of modularization of wind turbine blade was taken from structural standpoint through finite element analysis. Initially, a non-segmented blade is modeled and its structural behavior is evaluated to serve as reference. The resonant, static bending and fatigue tests are simulated in accordance with IEC61400-23 standard for comparison purpose. The non-segmented test blade is separated at suitable location based on trade off studies and the segments are joined with an innovative double strap bonded joint configuration. The adhesive joint is modeled by adopting cohesive zone modeling approach in ANSYS. The developed blade model is analyzed for its structural response through simulation. Performances of both the blades are found to be similar, which indicates that, efficient segmentation of the long blade is possible which facilitates easy transportation of the blades and on site reassembling. The location selected for segmentation and adopted joint configuration has resulted in an efficient segmented blade model which proves the methodology adopted for segmentation was quite effective. The developed segmented blade appears to be the viable alternative considering its structural response specifically in fatigue within considered assumptions.

The Strategies for Teaching Digital Art in the Classroom as a Way of Enhancing Pupils’ Artistic Creativity

Teaching art by digital means is a big challenge for the majority of teachers of art and design in primary schools, yet it allows relationships between art, technology and creativity to be clearly identified. The aim of this article is to present a modern way of teaching art, using digital tools in the art classroom to improve creative ability in pupils aged between nine and eleven years. It also presents a conceptual model for creativity based on digital art. The model could be useful for pupils interested in learning to draw by using an e-drawing package, and for teachers who are interested in teaching modern digital art in order to improve children’s creativity. By illustrating the strategy of teaching art through technology, this model may also help education providers to make suitable choices about which technological approaches are most effective in enhancing students’ creative ability, and which digital art tools can benefit children by developing their technical skills. It is also expected that use of this model will help to develop skills of social interaction, which may in turn improve intellectual ability.

Evaluating the Use of Digital Art Tools for Drawing to Enhance Artistic Ability and Improve Digital Skill among Junior School Students

This study investigated some results of the use of digital art tools by junior school children in order to discover if these tools could promote artistic ability and creativity. The study considers the ease of use and usefulness of the tools as well as how to assess artwork produced by digital means. As the use of these tools is a relatively new development in Art education, this study may help educators in their choice of which tools to use and when to use them. The study also aims to present a model for the assessment of students’ artistic development and creativity by studying their artistic activity. This model can help in determining differences in students’ creative ability and could be useful both for teachers, as a means of assessing digital artwork, and for students, by providing the motivation to use the tools to their fullest extent. Sixteen students aged nine to ten years old were observed and recorded while they used the digital drawing tools. The study found that, according to the students’ own statements, it was not the ease of use but the successful effects the tools provided which motivated the children to use them.

Preparation of Fe3Si/Ferrite Micro- and Nano-Powder Composite

Composite material based on Fe3Si micro-particles and Mn-Zn nano-ferrite was prepared using powder metallurgy technology. The sol-gel followed by autocombustion process was used for synthesis of Mn0.8Zn0.2Fe2O4 ferrite. 3 wt.% of mechanically milled ferrite was mixed with Fe3Si powder alloy. Mixed micro-nano powder system was homogenized by the Resonant Acoustic Mixing using ResodynLabRAM Mixer. This non-invasive homogenization technique was used to preserve spherical morphology of Fe3Si powder particles. Uniaxial cold pressing in the closed die at pressure 600 MPa was applied to obtain a compact sample. Microwave sintering of green compact was realized at 800°C, 20 minutes, in air. Density of the powders and composite was measured by Hepycnometry. Impulse excitation method was used to measure elastic properties of sintered composite. Mechanical properties were evaluated by measurement of transverse rupture strength (TRS) and Vickers hardness (HV). Resistivity was measured by 4 point probe method. Ferrite phase distribution in volume of the composite was documented by metallographic analysis. It has been found that nano-ferrite particle distributed among micro- particles of Fe3Si powder alloy led to high relative density (~93%) and suitable mechanical properties (TRS >100 MPa, HV ~1GPa, E-modulus ~140 GPa) of the composite. High electric resistivity (R~6.7 ohm.cm) of prepared composite indicate their potential application as soft magnetic material at medium and high frequencies.

The Effect of Different Levels of Seed and Extract of Harmal (Peganum harmala L.) on Immune Responses of Broiler Chicks

The present study was carried out to evaluate the effect of different levels of dietary seed and extract of Harmal (Peganum harmala L.) on immunity of broiler chicks. A total of 350 one-day old broiler chicks (Ross 308) were randomly allocated to five dietary treatments with four replicates pen of 14 birds each. Dietary treatments consisted of control, 1 and 2 g/kg Harmal seed in diet, 100 and 200 mg/L Harmal seed extract in water. Broilers received dietary treatments from 1 to 42 d. Two birds from each pen were randomly weighed and sacrificed at 42 d of age, the relative weight of lymphoid organs (bursa of Fabercius and spleen) to live weight were calculated. Antibody titers against Newcastle and influenza viruses and sheep red blood cell were measured at 30 d of age. Results showed that the relative weights of lymphoid organs were not affected by dietary treatments. Furthermore, antibody titer against Newcastle and influenza viruses as well as sheep red blood cell antigen were significantly (P

Video Shot Detection and Key Frame Extraction Using Faber Shauder DWT and SVD

Key frame extraction methods select the most representative frames of a video, which can be used in different areas of video processing such as video retrieval, video summary, and video indexing. In this paper we present a novel approach for extracting key frames from video sequences. The frame is characterized uniquely by his contours which are represented by the dominant blocks. These dominant blocks are located on the contours and its near textures. When the video frames have a noticeable changement, its dominant blocks changed, then we can extracte a key frame. The dominant blocks of every frame is computed, and then feature vectors are extracted from the dominant blocks image of each frame and arranged in a feature matrix. Singular Value Decomposition is used to calculate sliding windows ranks of those matrices. Finally the computed ranks are traced and then we are able to extract key frames of a video. Experimental results show that the proposed approach is robust against a large range of digital effects used during shot transition.

Study of Parameters Affecting the Electrostatic Attractions Force

This paper contains 2 main parts. In the first part of paper we simulated and studied three types of electrode patterns used in various industries for suspension and handling of the semiconductor and glass and we selected the best pattern by evaluating the electrostatic force, which was comb pattern electrode. In the second part we investigated the parameters affecting the amount of electrostatic force such as the gap between surface and electrode (g), the electrode width (w), the gap between electrodes (t), the surface permittivity and electrode length and methods of improvement of adhesion force by changing these values.

Institutional Foundations of Capitalism and Tourism Management Problems of Countries at the Transition Stage (Case of Georgia)

In Capitalism all economic activity rests upon a set of core institutional foundations, main from which are privately owned capital assets and profit. How these core institutional foundations are working in former soviet countries, in particular in Travel and Tourism Industry of Georgia? The role of Travel and Tourism as a key pillar of economic growth is being increasingly recognized by governments in all regions of the world. For the last few years Georgia succeeded in the World Bank and IFC “Doing Business” rankings. Despite of that, during decades totally different statistical data of the tourism sector were provided by the different State bodies; economic parameters were published few, or not published at all. The frequency and extent of property rights violation in Georgia has repeatedly been the subject of concern for the last decade. Total value of abrogated by the former Georgian Government private property is estimated approximately in US$4-5 billion. Thus, if economic profitability is unknown and property rights are not protected – that means that the main institutional foundations of capitalism in Georgia, are not working properly yet, that cause management problems at all levels of the national Travel and Tourism industry of Georgia.

Possibilistic Aggregations in the Investment Decision Making

This work proposes a fuzzy methodology to support the investment decisions. While choosing among competitive investment projects, the methodology makes ranking of projects using the new aggregation OWA operator – AsPOWA, presented in the environment of possibility uncertainty. For numerical evaluation of the weighting vector associated with the AsPOWA operator the mathematical programming problem is constructed. On the basis of the AsPOWA operator the projects’ group ranking maximum criteria is constructed. The methodology also allows making the most profitable investments into several of the project using the method developed by the authors for discrete possibilistic bicriteria problems. The article provides an example of the investment decision-making that explains the work of the proposed methodology.

SCM Challenges and Opportunitiesin the Timber Construction Sector

The purpose of this paper is to identify the main challenges faced by companies in the timber construction sector and to provide improvement opportunities that can be implemented on a short-, medium- and long-term basis. To identify the challenges and propose actions for each company a literature review and a multiple case research were conducted using the Quick Scan Audit Methodology. Finally, the findings and outcomes are compared with each other to support companies in the timer construction sector when implementing and restructuring their day-to-day activities.

The Potential of Digital Tools in Art Lessons at Junior School Level to Improve Artistic Ability Using Tamazight Fonts

The aim of this research is to explore how pupils in art classes can use creative digital art tools to redesign Tamazight fonts, in order to develop children’s artistic creativity, enable them to learn about a new culture, and to help the teacher assess the creativity of pupils in the art class. It can also help students to improve their talents in drawing. The study could relate to research in Libya among the Amazigh people (better known as Berber) and possibly the development of Tamazight fonts with new uses in art. The research involved students aged 9-10 years old working with digital art tools, and was designed to explore the potential of digital technology by discovering suitable tools and techniques to develop children’s artistic performance using Tamazight fonts. The project also sought to show the aesthetic aspects of these characters and to stimulate the artistic creativity of these young people.

Neural Network in Fixed Time for Collision Detection between Two Convex Polyhedra

In this paper, a different architecture of a collision detection neural network (DCNN) is developed. This network, which has been particularly reviewed, has enabled us to solve with a new approach the problem of collision detection between two convex polyhedra in a fixed time (O (1) time). We used two types of neurons, linear and threshold logic, which simplified the actual implementation of all the networks proposed. The study of the collision detection is divided into two sections, the collision between a point and a polyhedron and then the collision between two convex polyhedra. The aim of this research is to determine through the AMAXNET network a mini maximum point in a fixed time, which allows us to detect the presence of a potential collision.

Removal of Lead in High Rate Activated Sludge System

The heavy metals pollution in water, sediments and fish of Lake Manzala affected form the disposal of wastewater, industrial and agricultural drainage water into the lake on the environmental situation. A pilot plant with an industrial discharge flow of 135L/h designed according to the activated sludge plant to simulate between the biological and chemical treatment with the addition of alum to the aeration tank with dosages of 100, 150, 200 and 250 mg/L. The industrial discharge had concentrations of Lead and BOD5 with an average range 1.22, 145mg/L respectively. That means the average Pb was high up to 25 times than the allowed permissible concentration. The optimization of the chemical-biological process using 200mg/L Alum dosage compared has improvement of Lead and BOD5 removal efficiency to 61.76% and 56% respectively.

Ideological Framing in Television News: The Case of “Settlement Process”

Television news has gained a new dimension in terms of ideological approaches as a result of such factors as globalization, cross monopolization, presence of international companies etc. and certain strategies have been developed at the production, presentation and distribution stages of news. In this study, television news about a process called “settlement process” was investigated. In this framework, news about the settlement process on TV channels of TRT 1, ATV, FOX TV, NTV, HABERTÜRK, TRT HABER and STV was investigated using the content analysis method in terms of the strategies the ideology construction, attitude towards the party in power, attitude towards parties in opposition and attitude towards BDP (Peace and Democracy Part) and Imrali (the island where Abdullah Ocalan, head of PKK, is kept). First, the aforementioned TV channels were selected randomly from 3 groups in order to be able to reveal the representational capacity of commercial, news and public channels. The study covers 557 news items broadcast in the main news bulletins between the dates of 15 March 2013 and 15 March 2013. While there was a positive attitude towards the government in a sizable portion of the news about the settlement process (63.6%), the attitude of 25.3% of the news was impartial towards the government and 11.3% had a negative attitude. On the other hand, there was a negative attitude towards the Opposition in a considerable portion of the news about the settlement process (56.1%). The attitude of 35.9% of the news towards the Opposition was impartial whereas 8.0% had a positive attitude. While 34.9% of the news about the settlement process used the legitimization strategy from among the ideology construction strategies, 22.8% used the unification strategy, 15.7% the reification strategy, 15.6% fractional and 11% concealment/mystification strategy.

Study on Status and Development of Hydraulic System Protection: Pump Combined With Air Chamber

Fluid transient analysis is one of the more challenging and complicated flow problems in the design and the operation of water pipeline systems (wps). When transient conditions "water hammer" exists, the life expectancy of the wps can be adversely impacted, resulting in pump and valve failures and catastrophic pipe ruptures. Transient control has become an essential requirement for ensuring safe operation of wps. An accurate analysis and suitable protection devices should be used to protect wps. This paper presents the problem of modeling and simulation of transient phenomena in wps based on the characteristics method. Also, it provides the influence of using the protection devices to control the adverse effects due to excessive and low pressure occur in the transient. The developed model applied for main wps: pump combined with closed surge tank connected to a reservoir. The results obtained provide that the model is an efficient tool for water hammer analysis. Moreover; using the closed surge tank reduces the unfavorable effects of transients.

Correlates of Coping in Individuals with Tinnitus

Tinnitus is commonly defined as an aberrant  perception of sound without external stimulus. It’s a chronic  condition with consequences on the QOL. The coping strategies used  were not always effective and coping was identified as a predictor of  QOL in individuals with tinnitus, which reinforces the idea that in  health the use of effective coping styles should be promoted. This  work intend to verify relations between coping strategies assessed by  BriefCope in subjects with tinnitus and variables such as gender, age  and severity of tinnitus measured by THI and the Visual Analogue  Scale and also hearing and hyperacusis. The results indicate that there  are any statistically significant relationships between the variables  assessed in relation to the results of BriefCope except in the Visual  Analogue Scale.These results, indicating no relationship between  almost all variables, reinforce the need for further study of coping  strategies use by these patients.  

Simulating Flow Transients in Conveying Pipeline Systems by Rigid Column and Full Elastic Methods: Pump Combined with Air Chamber

In water pipeline systems, the flow control is an integrated part of the operation, for instance, opening and closing the valves, starting and stopping the pumps, when these operations very quickly performed, they shall cause the hydraulic transient phenomena, which may cause pump and, valve failures and catastrophic pipe ruptures. Fluid transient analysis is one of the more challenging and complicated flow problems in the design and the operation of water pipeline systems. Transient control has become an essential requirement for ensuring safe operation of water pipeline systems. An accurate analysis and suitable protection devices should be used to protect water pipeline systems. The fourth-order Runge-Kutta method has been used to solve the dynamic and continuity equations in the rigid column method, while the characteristics method used to solve these equations in the full elastic methods. This paper presents the problem of modeling and simulating of transient phenomena in conveying pipeline systems based on the rigid column and full elastic methods. Also, it provides the influence of using the protection devices to protect the pipeline systems from damaging due to the gain pressure which occur in the transient state. The results obtained provide that the model is an efficient tool for flow transient analysis and provide approximately identical results by using these two methods. Moreover; using the closed surge tank reduces the unfavorable effects of transients.

Grid–SVC: An Improvement in SVC Algorithm, Based On Grid Based Clustering

Support vector clustering (SVC) is an important kernelbased clustering algorithm in multi applications. It has got two main bottle necks, the high computation price and labeling piece. In this paper, we presented a modified SVC method, named Grid–SVC, to improve the original algorithm computationally. First we normalized and then we parted the interval, where the SVC is processing, using a novel Grid–based clustering algorithm. The algorithm parts the intervals, based on the density function of the data set and then applying the cartesian multiply makes multi-dimensional grids. Eliminating many outliers and noise in the preprocess, we apply an improved SVC method to each parted grid in a parallel way. The experimental results show both improvement in time complexity order and the accuracy.

Exploiting Two Intelligent Models to Predict Water Level: A Field Study of Urmia Lake, Iran

Water level forecasting using records of past time series is of importance in water resources engineering and management. For example, water level affects groundwater tables in low-lying coastal areas, as well as hydrological regimes of some coastal rivers. Then, a reliable prediction of sea-level variations is required in coastal engineering and hydrologic studies. During the past two decades, the approaches based on the Genetic Programming (GP) and Artificial Neural Networks (ANN) were developed. In the present study, the GP is used to forecast daily water level variations for a set of time intervals using observed water levels. The measurements from a single tide gauge at Urmia Lake, Northwest Iran, were used to train and validate the GP approach for the period from January 1997 to July 2008. Statistics, the root mean square error and correlation coefficient, are used to verify model by comparing with a corresponding outputs from Artificial Neural Network model. The results show that both these artificial intelligence methodologies are satisfactory and can be considered as alternatives to the conventional harmonic analysis.