Routing Load Analysis over 802.11 DCF of Reactive Routing Protocols DSR and DYMO

The Mobile Ad-hoc Network (MANET) is a collection of self-configuring and rapidly deployed mobile nodes (routers) without any central infrastructure. Routing is one of the potential issues. Many routing protocols are reported but it is difficult to decide which one is best in all scenarios. In this paper on demand routing protocols DSR and DYMO based on IEEE 802.11 DCF MAC protocol are examined and characteristic summary of these routing protocols is presented. Their performance is analyzed and compared on performance measuring metrics throughput, dropped packets due to non availability of routes, duplicate RREQ generated for route discovery and normalized routing load by varying CBR data traffic load using QualNet 5.0.2 network simulator.

Performance Analysis of Wireless Ad-Hoc Network Based on EDCA IEEE802.11e

IEEE 802.11e is the enhanced version of the IEEE 802.11 MAC dedicated to provide Quality of Service of wireless network. It supports QoS by the service differentiation and prioritization mechanism. Data traffic receives different priority based on QoS requirements. Fundamentally, applications are divided into four Access Categories (AC). Each AC has its own buffer queue and behaves as an independent backoff entity. Every frame with a specific priority of data traffic is assigned to one of these access categories. IEEE 802.11e EDCA (Enhanced Distributed Channel Access) is designed to enhance the IEEE 802.11 DCF (Distributed Coordination Function) mechanisms by providing a distributed access method that can support service differentiation among different classes of traffic. Performance of IEEE 802.11e MAC layer with different ACs is evaluated to understand the actual benefits deriving from the MAC enhancements.

IEEE 802.11 b and g WLAN Propagation Model using Power Density Measurements at ESPOL

This paper describes the development of a WLAN propagation model, using Spectral Analyzer measurements. The signal is generated by two Access Points (APs) on the base floor at the administrative Communication School of ESPOL building. In general, users do not have a Q&S reference about a wireless network; however, this depends on the level signal as a function of frequency, distance and other path conditions between receiver and transmitter. Then, power density of the signal decrease as it propagates through space and data transfer rate is affected. This document evaluates and implements empirical mathematical formulation for the characterization of WLAN radio wave propagation on two aisles of the building base floor.

Design and Development of Ferroelectric Material for Microstrip Patch Array Antenna

This paper presents the utilizing of ferroelectric material on antenna application. There are two different ferroelectric had been used on the proposed antennas which include of Barium Strontium Titanate (BST) and Bismuth Titanate (BiT), suitable for Access Points operating in the WLAN IEEE 802.11 b/g and WiMAX IEEE 802.16 within the range of 2.3 GHz to 2.5 GHz application. BST, which had been tested to own a dielectric constant of εr = 15 while BiT has a dielectric constant that higher than BST which is εr = 21 and both materials are in rectangular shaped. The influence of various parameters on antenna characteristics were investigated extensively using commercial electromagnetic simulations software by Communication Simulation Technology (CST). From theoretical analysis and simulation results, it was demonstrated that ferroelectric material used have not only improved the directive emission but also enhanced the radiation efficiency.

Software Architecture and Support for Patient Tracking Systems in Critical Scenarios

In this work a new platform for mobile-health systems is presented. System target application is providing decision support to rescue corps or military medical personnel in combat areas. Software architecture relies on a distributed client-server system that manages a wireless ad-hoc networks hierarchy in which several different types of client operate. Each client is characterized for different hardware and software requirements. Lower hierarchy levels rely in a network of completely custom devices that store clinical information and patient status and are designed to form an ad-hoc network operating in the 2.4 GHz ISM band and complying with the IEEE 802.15.4 standard (ZigBee). Medical personnel may interact with such devices, that are called MICs (Medical Information Carriers), by means of a PDA (Personal Digital Assistant) or a MDA (Medical Digital Assistant), and transmit the information stored in their local databases as well as issue a service request to the upper hierarchy levels by using IEEE 802.11 a/b/g standard (WiFi). The server acts as a repository that stores both medical evacuation forms and associated events (e.g., a teleconsulting request). All the actors participating in the diagnostic or evacuation process may access asynchronously to such repository and update its content or generate new events. The designed system pretends to optimise and improve information spreading and flow among all the system components with the aim of improving both diagnostic quality and evacuation process.

Traffic Load based Performance Analysis of DSR and STAR Routing Protocol

The wireless adhoc network is comprised of wireless node which can move freely and are connected among themselves without central infrastructure. Due to the limited transmission range of wireless interfaces, in most cases communication has to be relayed over intermediate nodes. Thus, in such multihop network each node (also called router) is independent, self-reliant and capable to route the messages over the dynamic network topology. Various protocols are reported in this field and it is very difficult to decide the best one. A key issue in deciding which type of routing protocol is best for adhoc networks is the communication overhead incurred by the protocol. In this paper STAR a table driven and DSR on demand protocols based on IEEE 802.11 are analyzed for their performance on different performance measuring metrics versus varying traffic CBR load using QualNet 5.0.2 network simulator.

The CEO Mission II, Rescue Robot with Multi-Joint Mechanical Arm

This paper presents design features of a rescue robot, named CEO Mission II. Its body is designed to be the track wheel type with double front flippers for climbing over the collapse and the rough terrain. With 125 cm. long, 5-joint mechanical arm installed on the robot body, it is deployed not only for surveillance from the top view but also easier and faster access to the victims to get their vital signs. Two cameras and sensors for searching vital signs are set up at the tip of the multi-joint mechanical arm. The third camera is at the back of the robot for driving control. Hardware and software of the system, which controls and monitors the rescue robot, are explained. The control system is used for controlling the robot locomotion, the 5-joint mechanical arm, and for turning on/off devices. The monitoring system gathers all information from 7 distance sensors, IR temperature sensors, 3 CCD cameras, voice sensor, robot wheels encoders, yawn/pitch/roll angle sensors, laser range finder and 8 spare A/D inputs. All sensors and controlling data are communicated with a remote control station via IEEE 802.11b Wi-Fi. The audio and video data are compressed and sent via another IEEE 802.11g Wi-Fi transmitter for getting real-time response. At remote control station site, the robot locomotion and the mechanical arm are controlled by joystick. Moreover, the user-friendly GUI control program is developed based on the clicking and dragging method to easily control the movement of the arm. Robot traveling map is plotted from computing the information of wheel encoders and the yawn/pitch data. 2D Obstacle map is plotted from data of the laser range finder. The concept and design of this robot can be adapted to suit many other applications. As the Best Technique awardee from Thailand Rescue Robot Championship 2006, all testing results are satisfied.

Compact Slotted Broadband Antenna for Wireless Applications

This paper presents the theoretical investigation of a slotted patch antenna. The main objective of proposed work is to obtain a large bandwidth antenna with reduced size. The antenna has a compact size of 21.1mm x 20.25mm x 8.5mm. Two designs with minor variation are studied which provide wide impedance bandwidths of 24.056% and 25.63% respectively with the use of parasitic elements when excited by a probe feed. The advantages of this configuration are its compact size and the wide range of frequencies covered. A parametric study is also conducted to investigate the characteristics of the antenna under different conditions. The measured return loss and radiation pattern indicate the suitability of this design for WLAN applications, namely, Wi- Max, 802.11a/b/g and ISM bands.

DODR : Delay On-Demand Routing

As originally designed for wired networks, TCP (transmission control protocol) congestion control mechanism is triggered into action when packet loss is detected. This implicit assumption for packet loss mostly due to network congestion does not work well in Mobile Ad Hoc Network, where there is a comparatively high likelihood of packet loss due to channel errors and node mobility etc. Such non-congestion packet loss, when dealt with by congestion control mechanism, causes poor TCP performance in MANET. In this study, we continue to investigate the impact of the interaction between transport protocols and on-demand routing protocols on the performance and stability of 802.11 multihop networks. We evaluate the important wireless networking events caused routing change, and propose a cross layer method to delay the unnecessary routing changes, only need to add a sensitivity parameter α , which represents the on-demand routing-s reaction to link failure of MAC layer. Our proposal is applicable to the plain 802.11 networking environment, the simulation results that this method can remarkably improve the stability and performance of TCP without any modification on TCP and MAC protocol.

Fairness and Quality of Service Issues and Analysis of IEEE 802.11e Wireless LAN

The IEEE 802.11e which is an enhanced version of the 802.11 WLAN standards incorporates the Quality of Service (QoS) which makes it a better choice for multimedia and real time applications. In this paper we study various aspects concerned with 802.11e standard. Further, the analysis results for this standard are compared with the legacy 802.11 standard. Simulation results show that IEEE 802.11e out performs legacy IEEE 802.11 in terms of quality of service due to its flow differentiated channel allocation and better queue management architecture. We also propose a method to improve the unfair allocation of bandwidth for downlink and uplink channels by varying the medium access priority level.

VoIP and Database Traffic Co-existence over IEEE 802.11b WLAN with Redundancy

This paper presents the findings of two experiments that were performed on the Redundancy in Wireless Connection Model (RiWC) using the 802.11b standard. The experiments were simulated using OPNET 11.5 Modeler software. The first was aimed at finding the maximum number of simultaneous Voice over Internet Protocol (VoIP) users the model would support under the G.711 and G.729 codec standards when the packetization interval was 10 milliseconds (ms). The second experiment examined the model?s VoIP user capacity using the G.729 codec standard along with background traffic using the same packetization interval as in the first experiment. To determine the capacity of the model under various experiments, we checked three metrics: jitter, delay and data loss. When background traffic was added, we checked the response time in addition to the previous three metrics. The findings of the first experiment indicated that the maximum number of simultaneous VoIP users the model was able to support was 5, which is consistent with recent research findings. When using the G.729 codec, the model was able to support up to 16 VoIP users; similar experiments in current literature have indicated a maximum of 7 users. The finding of the second experiment demonstrated that the maximum number of VoIP users the model was able to support was 12, with the existence of background traffic.

Heterogeneity-Aware Load Balancing for Multimedia Access over Wireless LAN Hotspots

Wireless LAN (WLAN) access in public hotspot areas becomes popular in the recent years. Since more and more multimedia information is available in the Internet, there is an increasing demand for accessing multimedia information through WLAN hotspots. Currently, the bandwidth offered by an IEEE 802.11 WLAN cannot afford many simultaneous real-time video accesses. A possible way to increase the offered bandwidth in a hotspot is the use of multiple access points (APs). However, a mobile station is usually connected to the WLAN AP with the strongest received signal strength indicator (RSSI). The total consumed bandwidth cannot be fairly allocated among those APs. In this paper, we will propose an effective load-balancing scheme via the support of the IAPP and SNMP in APs. The proposed scheme is an open solution and doesn-t need any changes in both wireless stations and APs. This makes load balancing possible in WLAN hotspots, where a variety of heterogeneous mobile devices are employed.

A Novel FFT-Based Frequency Offset Estimator for OFDM Systems

This paper proposes a novel frequency offset (FO) estimator for orthogonal frequency division multiplexing. Simplicity is most significant feature of this algorithm and can be repeated to achieve acceptable accuracy. Also fractional and integer part of FO is estimated jointly with use of the same algorithm. To do so, instead of using conventional algorithms that usually use correlation function, we use DFT of received signal. Therefore, complexity will be reduced and we can do synchronization procedure by the same hardware that is used to demodulate OFDM symbol. Finally, computer simulation shows that the accuracy of this method is better than other conventional methods.