Effect of Manganese Doping on Ferrroelectric Properties of (K0.485Na0.5Li0.015)(Nb0.98V0.02)O3 Lead-Free Piezoceramic

Alkaline niobate (Na0.5K0.5)NbO3 ceramic system has attracted major attention in view of its potential for replacing the highly toxic but superior lead zirconate titanate (PZT) system for piezoelectric applications. Recently, a more detailed study of this system reveals that the ferroelectric and piezoelectric properties are optimized in the Li- and V-modified system having the composition (K0.485Na0.5Li0.015)(Nb0.98V0.02)O3. In the present work, we further study the pyroelectric behaviour of this composition along with another doped with Mn4+. So, (K0.485Na0.5Li0.015)(Nb0.98V0.02)O3 + x MnO2 (x = 0, and 0.01 wt. %) ceramic compositions were synthesized by conventional ceramic processing route. X-ray diffraction study reveals that both the undoped and Mn4+-doped ceramic samples prepared crystallize into a perovskite structure having orthorhombic symmetry. Dielectric study indicates that Mn4+ doping has little effect on both the Curie temperature (Tc) and tetragonal-orthorhombic phase transition temperature (Tot). The bulk density, room-temperature dielectric constant (εRT), and room-c The room-temperature coercive field (Ec) is observed to be lower in Mn4+ doped sample. The detailed analysis of the P-E hysteresis loops over the range of temperature from about room temperature to Tot points out that enhanced ferroelectric properties exist in this temperature range with better thermal stability for the Mn4+ doped ceramic. The study reveals that small traces of Mn4+ can modify (K0.485Na0.5Li0.015)(Nb0.98V0.02)O3 system so as to improve its ferroelectric properties with good thermal stability over a wide range of temperature.

A Modified Run Length Coding Technique for Test Data Compression Based on Multi-Level Selective Huffman Coding

Test data compression is an efficient method for reducing the test application cost. The problem of reducing test data has been addressed by researchers in three different aspects: Test Data Compression, Built-in-Self-Test (BIST) and Test set compaction. The latter two methods are capable of enhancing fault coverage with cost of hardware overhead. The drawback of the conventional methods is that they are capable of reducing the test storage and test power but when test data have redundant length of runs, no additional compression method is followed. This paper presents a modified Run Length Coding (RLC) technique with Multilevel Selective Huffman Coding (MLSHC) technique to reduce test data volume, test pattern delivery time and power dissipation in scan test applications where redundant length of runs is encountered then the preceding run symbol is replaced with tiny codeword. Experimental results show that the presented method not only improves the test data compression but also reduces the overall test data volume compared to recent schemes. Experiments for the six largest ISCAS-98 benchmarks show that our method outperforms most known techniques.

Optimization of Doubly Fed Induction Generator Equivalent Circuit Parameters by Direct Search Method

Doubly-fed induction generator (DFIG) is currently the choice for many wind turbines. These generators, when connected to the grid through a converter, is subjected to varied power system conditions like voltage variation, frequency variation, short circuit fault conditions, etc. Further, many countries like Canada, Germany, UK, Scotland, etc. have distinct grid codes relating to wind turbines. Accordingly, following the network faults, wind turbines have to supply a definite reactive current. To satisfy the requirements including reactive current capability, an optimum electrical design becomes a mandate for DFIG to function. This paper intends to optimize the equivalent circuit parameters of an electrical design for satisfactory DFIG performance. Direct search method has been used for optimization of the parameters. The variables selected include electromagnetic core dimensions (diameters and stack length), slot dimensions, radial air gap between stator and rotor and winding copper cross section area. Optimization for 2 MW DFIG has been executed separately for three objective functions - maximum reactive power capability (Case I), maximum efficiency (Case II) and minimum weight (Case III). In the optimization analysis program, voltage variations (10%), power factor- leading and lagging (0.95), speeds for corresponding to slips (-0.3 to +0.3) have been considered. The optimum designs obtained for objective functions were compared. It can be concluded that direct search method of optimization helps in determining an optimum electrical design for each objective function like efficiency or reactive power capability or weight minimization.

Chemical and Sensory Properties of Chardonnay Wines Produced in Different Oak Barrels

French oak and American oak barrels are most famous all over the world, but barrels of different origin can also be used for obtaining high quality wines. The aim of this research was to compare the influence of different Slovenian (Croatian) and French oak barrels on the quality of Chardonnay wine. Grapes were grown in the Croatian wine growing region of Kutjevo in 2015. Chardonnay wines were tested for basic oenological parameters (alcohol, extract, reducing sugar, SO2, acidity), total polyphenols content (Folin-Ciocalteu method), antioxidant activity (ABTS and DPPH method) and colour density. Sensory evaluation was performed by students of viticulture/oenology. Samples produced by classical fermentation and ageing in French oak barrels had better results for polyphenols and sensory evaluation (especially low toasting level) than samples in Slovenian barrels. All tested samples were scored as a “quality” or “premium quality” wines. Sur lie method of fermentation and ageing in Slovenian oak barrel had very good extraction of polyphenols and high antioxidant activity with the usage of authentic yeasts, while commercial yeast strain resulted in worse chemical and sensory parameters.

Non-Convex Multi Objective Economic Dispatch Using Ramp Rate Biogeography Based Optimization

Multi objective non-convex economic dispatch problems of a thermal power plant are of grave concern for deciding the cost of generation and reduction of emission level for diminishing the global warming level for improving green-house effect. This paper deals with ramp rate constraints for achieving better inequality constraints so as to incorporate valve point loading for cost of generation in thermal power plant through ramp rate biogeography based optimization involving mutation and migration. Through 50 out of 100 trials, the cost function and emission objective function were found to have outperformed other classical methods such as lambda iteration method, quadratic programming method and many heuristic methods like particle swarm optimization method, weight improved particle swarm optimization method, constriction factor based particle swarm optimization method, moderate random particle swarm optimization method etc. Ramp rate biogeography based optimization applications prove quite advantageous in solving non convex multi objective economic dispatch problems subjected to nonlinear loads that pollute the source giving rise to third harmonic distortions and other such disturbances.

Ramp Rate and Constriction Factor Based Dual Objective Economic Load Dispatch Using Particle Swarm Optimization

Economic Load Dispatch (ELD) proves to be a vital optimization process in electric power system for allocating generation amongst various units to compute the cost of generation, the cost of emission involving global warming gases like sulphur dioxide, nitrous oxide and carbon monoxide etc. In this dissertation, we emphasize ramp rate constriction factor based particle swarm optimization (RRCPSO) for analyzing various performance objectives, namely cost of generation, cost of emission, and a dual objective function involving both these objectives through the experimental simulated results. A 6-unit 30 bus IEEE test case system has been utilized for simulating the results involving improved weight factor advanced ramp rate limit constraints for optimizing total cost of generation and emission. This method increases the tendency of particles to venture into the solution space to ameliorate their convergence rates. Earlier works through dispersed PSO (DPSO) and constriction factor based PSO (CPSO) give rise to comparatively higher computational time and less good optimal solution at par with current dissertation. This paper deals with ramp rate and constriction factor based well defined ramp rate PSO to compute various objectives namely cost, emission and total objective etc. and compares the result with DPSO and weight improved PSO (WIPSO) techniques illustrating lesser computational time and better optimal solution. 

Performance Analysis of the Time-Based and Periodogram-Based Energy Detector for Spectrum Sensing

Classically, an energy detector is implemented in time domain (TD). However, frequency domain (FD) based energy detector has demonstrated an improved performance. This paper presents a comparison between the two approaches as to analyze their pros and cons. A detailed performance analysis of the classical TD energy-detector and the periodogram based detector is performed. Exact and approximate mathematical expressions for probability of false alarm (Pf) and probability of detection (Pd) are derived for both approaches. The derived expressions naturally lead to an analytical as well as intuitive reasoning for the improved performance of (Pf) and (Pd) in different scenarios. Our analysis suggests the dependence improvement on buffer sizes. Pf is improved in FD, whereas Pd is enhanced in TD based energy detectors. Finally, Monte Carlo simulations results demonstrate the analysis reached by the derived expressions.

Design and Implementation of Medium Access Control Based Routing on Real Wireless Sensor Networks Testbed

IEEE 802.15.4 is a Low Rate Wireless Personal Area Networks (LR-WPAN) standard combined with ZigBee, which is going to enable new applications in Wireless Sensor Networks (WSNs) and Internet of Things (IoT) domain. In recent years, it has become a popular standard for WSNs. Wireless communication among sensor motes, enabled by IEEE 802.15.4 standard, is extensively replacing the existing wired technology in a wide range of monitoring and control applications. Researchers have proposed a routing framework and mechanism that interacts with the IEEE 802.15.4 standard using software platform. In this paper, we have designed and implemented MAC based routing (MBR) based on IEEE 802.15.4 standard using a hardware platform “SENSEnuts”. The experimental results include data through light and temperature sensors obtained from communication between PAN coordinator and source node through coordinator, MAC address of some modules used in the experimental setup, topology of the network created for simulation and the remaining battery power of the source node. Our experimental effort on a WSN Testbed has helped us in bridging the gap between theoretical and practical aspect of implementing IEEE 802.15.4 for WSNs applications.

Seismic Vulnerability of Structures Designed in Accordance with the Allowable Stress Design and Load Resistant Factor Design Methods

The method selected for the design of structures not only can affect their seismic vulnerability but also can affect their construction cost. For the design of steel structures, two distinct methods have been introduced by existing codes, namely allowable stress design (ASD) and load resistant factor design (LRFD). This study investigates the effect of using the aforementioned design methods on the seismic vulnerability and construction cost of steel structures. Specifically, a 20-story building equipped with special moment resisting frame and an eccentrically braced system was selected for this study. The building was designed for three different intensities of peak ground acceleration including 0.2 g, 0.25 g, and 0.3 g using the ASD and LRFD methods. The required sizes of beams, columns, and braces were obtained using response spectrum analysis. Then, the designed frames were subjected to nine natural earthquake records which were scaled to the designed response spectrum. For each frame, the base shear, story shears, and inter-story drifts were calculated and then were compared. Results indicated that the LRFD method led to a more economical design for the frames. In addition, the LRFD method resulted in lower base shears and larger inter-story drifts when compared with the ASD method. It was concluded that the application of the LRFD method not only reduced the weights of structural elements but also provided a higher safety margin against seismic actions when compared with the ASD method.

Stability of Essential Oils in Pang-Rum by Gas Chromatography-Mass Spectrometry

Ancient Thai perfumed powder was used as a fragrance for clothing, food, and the body. Plant-based natural Thai perfume products are known as Pang-Rum. The objective of this study was to evaluate the stability of essential oils after six months of incubation. The chemical compositions were determined by gas chromatography-mass spectrometry (GC-MS), in terms of the qualitative composition of the isolated essential oil. The isolation of the essential oil of natural products by incubate sample for 5 min at 40 ºC is described. The volatile components were identified by percentage of total peak areas comparing their retention times of GC chromatograph with NIST mass spectral library. The results show no significant difference in the seven chromatograms of perfumed powder (Pang-Rum) both with binder and without binder. Further identification was done by GC-MS. Some components of Pang-Rum with/without binder were changed by temperature and time.

Optimizing Machine Vision System Setup Accuracy by Six-Sigma DMAIC Approach

Machine vision system provides automatic inspection to reduce manufacturing costs considerably. However, only a few principles have been found to optimize machine vision system and help it function more accurately in industrial practice. Mostly, there were complicated and impractical design techniques to improve the accuracy of machine vision system. This paper discusses implementing the Six Sigma Define, Measure, Analyze, Improve, and Control (DMAIC) approach to optimize the setup parameters of machine vision system when it is used as a direct measurement technique. This research follows a case study showing how Six Sigma DMAIC methodology has been put into use.

Object-Oriented Multivariate Proportional-Integral-Derivative Control of Hydraulic Systems

This paper presents and discusses the application of the object-oriented modelling software SIMSCAPE to hydraulic systems, with particular reference to multivariable proportional-integral-derivative (PID) control. As a result, a particular modelling approach of a double cylinder-piston coupled system is proposed and motivated, and the SIMULINK based PID tuning tool has also been used to select the proper controller parameters. The paper demonstrates the usefulness of the object-oriented approach when both physical modelling and control are tackled.

Evaluation of Applicability of High Strength Stirrup for Prestressed Concrete Members

Recently, the use of high-strength materials is increasing as the construction of large structures and high-rise structures increases. This paper presents an analysis of the shear behavior of prestressed concrete members with various types of materials by simulating a finite element (FE) analysis. The analytical results indicated that the shear strength and shear failure mode were strongly influenced by not only the shear reinforcement ratio but also the yield strength of shear reinforcement and the compressive strength of concrete. Though the yield strength of shear reinforcement increased the shear strength of prestressed concrete members, there was a limit to the increase in strength because of the change of shear failure modes. According to the results of FE analysis on various parameters, the maximum yield strength of the steel stirrup that can be applied to prestressed concrete members was about 860 MPa.

Chilean Business Orientalism: The Role of Non-State Actors in the Frame of Asymmetric Bilateral Relations

The current research paper assesses how the narrative of Chilean businesspeople about China shapes a new Orientalism Analyses on the role of non-state actors in foreign policy that have hitherto theorized about Orientalism as a narrative of hegemonic power. Hence, it has been instrumental to the efforts of imperialist powers to justify their mission civilisatrice. However, such conceptualization can seldom explain new complexities of international interactions at the height of globalization. Hence, we assessed the case of Chile, a small Latin American country, and its relationship with China, its largest trading partner. Through a discourse analysis of interviews with Chilean businesspeople engaged in the Chinese market, we could determine that Chile is building an Orientalist image of China. This new business Orientalism reinforces a relation of alterity based on commercial opportunities, traditional values, and natural dispositions. Hence, the perception of the Chinese Other amongst Chilean business people frames a new set of representations as part of the essentially commercial nature of current bilateral relations. It differs from previous frames, such as the racial bias frame of the early 20th century, or the anti-communist frame in reaction to Mao’s leadership. As in every narrative of alterity, there is not only a construction of the Other but also a definition of the Self. Consequently, this analysis constitutes a relevant case of the role of non-state actors in asymmetrical bilateral relations, where the non-state actors of the minor power build and act upon an Orientalist frame, which is not representative of its national status in the relation. This study emerges as a contribution on the relation amongst non-state actors in asymmetrical relations, where the smaller power’s business class acts on a negative prejudice of its interactions with its counterpart. The research builds upon the constructivist approach to international relations, linking the idea of Nation Branding with Orientalism in the case of Chile-China relations.

Moving Object Detection Using Histogram of Uniformly Oriented Gradient

Moving object detection (MOD) is an important issue in advanced driver assistance systems (ADAS). There are two important moving objects, pedestrians and scooters in ADAS. In real-world systems, there exist two important challenges for MOD, including the computational complexity and the detection accuracy. The histogram of oriented gradient (HOG) features can easily detect the edge of object without invariance to changes in illumination and shadowing. However, to reduce the execution time for real-time systems, the image size should be down sampled which would lead the outlier influence to increase. For this reason, we propose the histogram of uniformly-oriented gradient (HUG) features to get better accurate description of the contour of human body. In the testing phase, the support vector machine (SVM) with linear kernel function is involved. Experimental results show the correctness and effectiveness of the proposed method. With SVM classifiers, the real testing results show the proposed HUG features achieve better than classification performance than the HOG ones.

Impact of Long Term Application of Municipal Solid Waste on Physicochemical and Microbial Parameters and Heavy Metal Distribution in Soils in Accordance to Its Agricultural Uses

Municipal Solid Waste (MSW), being a rich source of organic materials, can be used for agricultural applications as an important source of nutrients for soil and plants. This is also an alternative beneficial management practice for MSW generated in developing countries. In the present study, MSW treated soil samples from last four to six years at farmer’s field in Rohtak and Gurgaon states (Haryana, India) were collected. The samples were analyzed for all-important agricultural parameters and compared with the control untreated soil samples. The treated soil at farmer’s field showed increase in total N by 48 to 68%, P by 45.7 to 51.3%, and K by 60 to 67% compared to untreated soil samples. Application of sewage sludge at different sites led to increase in microbial biomass C by 60 to 68% compared to untreated soil. There was significant increase in total Cu, Cr, Ni, Fe, Pb, and Zn in all sewage sludge amended soil samples; however, concentration of all the metals were still below the current permitted (EU) limits. To study the adverse effect of heavy metals accumulation on various soil microbial activities, the sewage sludge samples (from wastewater treatment plant at Gurgaon) were artificially contaminated with heavy metal concentration above the EU limits. They were then applied to soil samples with different rates (0.5 to 4.0%) and incubated for 90 days under laboratory conditions. The samples were drawn at different intervals and analyzed for various parameters like pH, EC, total N, P, K, microbial biomass C, carbon mineralization, and diethylenetriaminepentaacetic acid (DTPA) exactable heavy metals. The results were compared to the uncontaminated sewage sludge. The increasing level of sewage sludge from 0.5 to 4% led to build of organic C and total N, P and K content at the early stages of incubation. But, organic C was decreased after 90 days because of decomposition of organic matter. Biomass production was significantly increased in both contaminated and uncontaminated sewage soil samples, but also led to slight increases in metal accumulation and their bioavailability in soil. The maximum metal concentrations were found in treatment with 4% of contaminated sewage sludge amendment.

A Review on Climate Change and Sustainable Agriculture in Southeast Nigeria

Climate change has both negative and positive effects in agricultural production. For agriculture to be sustainable in adverse climate change condition, some natural measures are needed. The issue is to produce more food with available natural resources and reduce the contribution of agriculture to climate change. The study reviewed climate change and sustainable agriculture in southeast Nigeria. Data from the study were from secondary sources. Ten scientific papers were consulted and data for the review were collected from three. The objectives of the paper were as follows: to review the effect of climate change on one major arable crop in southeast Nigeria (yam; Dioscorea rotundata); evident of climate change impact and methods for sustainable agricultural production in adverse weather condition. Some climatic parameter as sunshine, relative humidity and rainfall have negative relationship with yam production and significant at 10% probability. Crop production was predicted to decline by 25% per hectare by 2060 while livestock production has increased the incidence of diseases and pathogens as the major effect to agriculture. Methods for sustainable agriculture and damage of natural resources by climate change were highlighted. Agriculture needs to be transformed as climate changes to enable the sector to be sustainable. There should be a policy in place to facilitate the integration of sustainability in Nigeria agriculture.

Enhanced Multi-Intensity Analysis in Multi-Scenery Classification-Based Macro and Micro Elements

Several computationally challenging issues are encountered while classifying complex natural scenes. In this paper, we address the problems that are encountered in rotation invariance with multi-intensity analysis for multi-scene overlapping. In the present literature, various algorithms proposed techniques for multi-intensity analysis, but there are several restrictions in these algorithms while deploying them in multi-scene overlapping classifications. In order to resolve the problem of multi-scenery overlapping classifications, we present a framework that is based on macro and micro basis functions. This algorithm conquers the minimum classification false alarm while pigeonholing multi-scene overlapping. Furthermore, a quadrangle multi-intensity decay is invoked. Several parameters are utilized to analyze invariance for multi-scenery classifications such as rotation, classification, correlation, contrast, homogeneity, and energy. Benchmark datasets were collected for complex natural scenes and experimented for the framework. The results depict that the framework achieves a significant improvement on gray-level matrix of co-occurrence features for overlapping in diverse degree of orientations while pigeonholing multi-scene overlapping.

The Impact of Innovation Best Practices in Economic Development

Innovation is the process of making changes, differences, and novelties in the products and services, adding values and business practices to create economic and social benefit. The purpose of this paper is to identify the strengths and weaknesses of innovation programs in developed and developing countries. We used a mixed-methods approach, quantitative as survey and qualitative as a multi-case study to examine innovation best practices in developed and developing countries. In addition, four case studies of innovation organisations based on the best practices and successful implementation in the developed and developing countries are selected for examination. The research findings provide guidance, suggestions, and recommendations for future implementation in developed and developing countries for practitioners such as policy makers, governments, funded organizations, and strategic institutions. In conclusion, innovation programs are vital tools for economic growth, knowledge, and technology transfer based on the several indicators such as creativity, entrepreneurship, role of government, role of university, strategic focus, new products, survival rate, job creation, start-up companies, and number of patents. The authors aim to conduct future research which will include a comparative study of innovation case studies between developed and developing countries for policy implications worldwide. The originality of this study makes a contribution to the current literature about the innovation best practice in developed and developing countries.

Testing the Validity of Feldstein-Horioka Puzzle in BRICS Countries

The increase of capital mobility across emerging economies has become an interesting topic for many economic policy makers. The current study tests the validity of Feldstein–Horioka puzzle for 5 BRICS countries. The sample period of the study runs from 2001 to 2014. The study uses the following parameter estimates well known as the Fully Modified OLS (FMOLS), and Dynamic OLS (DOLS). The results of the study show that investment and savings are cointegrated in the long run. The parameters estimated using FMOLS and DOLS are 0.85 and 0.74, respectively. These results imply that policy makers within BRICS countries have to consider flexible monetary and fiscal policy instruments to influence the mobility of capital with the bloc.