An Improved Cooperative Communication Scheme for IoT System

In internet of things (IoT) system, the communication scheme with reliability and low power is required to connect a terminal. Cooperative communication can achieve reliability and lower power than multiple-input multiple-output (MIMO) system. Cooperative communication increases the reliability with low power, but decreases a throughput. It has a weak point that the communication throughput is decreased. In this paper, a novel scheme is proposed to increase the communication throughput. The novel scheme is a transmission structure that increases transmission rate. A decoding scheme according to the novel transmission structure is proposed. Simulation results show that the proposed scheme increases the throughput without bit error rate (BER) performance degradation.

Study of the Late Phase of Core Degradation during Reflooding by Safety Injection System for VVER1000 with ASTECv2 Computer Code

This paper presents the modeling approach in SBO sequence for VVER 1000 reactors and describes the reactor core behavior at late in-vessel phase in case of late reflooding by HPIS and gives preliminary results for the ASTECv2 validation. The work is focused on investigation of plant behavior during total loss of power and the operator actions. The main goal of these analyses is to assess the phenomena arising during the Station blackout (SBO) followed by primary side high pressure injection system (HPIS) reflooding of already damaged reactor core at very late “in-vessel” phase. The purpose of the analyses is to define how the later HPIS switching on can delay the time of vessel failure or possibly avoid vessel failure. The times for HPP injection were chosen based on previously performed investigations.

Assessment of Groundwater Quality in Karakulam Grama Panchayath in Thiruvananthapuram, Kerala State, South India

Groundwater is vital to the livelihoods and health of the majority of the people, since it provides almost the entire water resource for domestic, agricultural and industrial uses. Groundwater quality comprises the physical, chemical and bacteriological qualities. The present investigation was carried out to determine the physicochemical and bacteriological quality of the ground water sources in the residential areas of Karakulam Grama Panchayath in Thiruvananthapuram district, Kerala state in India. Karakulam is located in the eastern suburbs of Thiruvananthapuram city. The major drinking water source of the residents in the study area is wells. The present study aims to assess the portability and irrigational suitability of groundwater in the study area. The water samples were collected from randomly selected dug wells and bore wells in the study area during post monsoon and pre monsoon seasons of the year 2014 after a preliminary field survey. The physical, chemical and bacteriological parameters of the water samples were analyzed following standard procedures. The concentration of heavy metals (Cd, Pb and Mn) in the acid digested water samples were determined by using an Atomic Absorption Spectrophotometer. The results showed that the pH of well water samples ranged from acidic to alkaline level. In majority of well water samples (>54 %) the iron and magnesium content were found high in both the seasons studied, and the values were above the permissible limits of WHO drinking water quality standards. Bacteriological analyses showed that 63% of the wells were contaminated with total coliforms in both the seasons studied. Irrigational suitability of groundwater was assessed by determining the chemical indices like Sodium Percentage (%Na), Sodium Adsorption Ratio (SAR), Residual Sodium Carbonate (RSC), Permeability Index (PI), and the results indicate that the well water in the study area are good for irrigation purposes. Therefore, the study reveals the degradation of drinking water quality groundwater sources in Karakulam Grama Panchayath in Thiruvananthapuram District, Keralain terms of its chemical and bacteriological characteristics, and is not potable without proper treatment. In the study, more than 1/3rdof the well water samples tested were positive for total coliforms, and the bacterial contamination may pose threat to public health. The study recommends the need for periodic well water quality monitoring in the study area and to conduct awareness programs among the residents.

Investigating the Process Kinetics and Nitrogen Gas Production in Anammox Hybrid Reactor with Special Emphasis on the Role of Filter Media

Anammox is a novel and promising technology that has changed the traditional concept of biological nitrogen removal. The process facilitates direct oxidation of ammonical nitrogen under anaerobic conditions with nitrite as an electron acceptor without addition of external carbon sources. The present study investigated the feasibility of Anammox Hybrid Reactor (AHR) combining the dual advantages of suspended and attached growth media for biodegradation of ammonical nitrogen in wastewater. Experimental unit consisted of 4 nos. of 5L capacity AHR inoculated with mixed seed culture containing anoxic and activated sludge (1:1). The process was established by feeding the reactors with synthetic wastewater containing NH4-H and NO2-N in the ratio 1:1 at HRT (hydraulic retention time) of 1 day. The reactors were gradually acclimated to higher ammonium concentration till it attained pseudo steady state removal at a total nitrogen concentration of 1200 mg/l. During this period, the performance of the AHR was monitored at twelve different HRTs varying from 0.25-3.0 d with increasing NLR from 0.4 to 4.8 kg N/m3d. AHR demonstrated significantly higher nitrogen removal (95.1%) at optimal HRT of 1 day. Filter media in AHR contributed an additional 27.2% ammonium removal in addition to 72% reduction in the sludge washout rate. This may be attributed to the functional mechanism of filter media which acts as a mechanical sieve and reduces the sludge washout rate many folds. This enhances the biomass retention capacity of the reactor by 25%, which is the key parameter for successful operation of high rate bioreactors. The effluent nitrate concentration, which is one of the bottlenecks of anammox process was also minimised significantly (42.3-52.3 mg/L). Process kinetics was evaluated using first order and Grau-second order models. The first-order substrate removal rate constant was found as 13.0 d-1. Model validation revealed that Grau second order model was more precise and predicted effluent nitrogen concentration with least error (1.84±10%). A new mathematical model based on mass balance was developed to predict N2 gas in AHR. The mass balance model derived from total nitrogen dictated significantly higher correlation (R2=0.986) and predicted N2 gas with least error of precision (0.12±8.49%). SEM study of biomass indicated the presence of heterogeneous population of cocci and rod shaped bacteria of average diameter varying from 1.2-1.5 mm. Owing to enhanced NRE coupled with meagre production of effluent nitrate and its ability to retain high biomass, AHR proved to be the most competitive reactor configuration for dealing with nitrogen laden wastewater.

Influence of Hydrolytic Degradation on Properties of Moisture Membranes Used in Fire-Protective Clothing

This study intends to show the influence of the hydrolytic degradation on the properties of the e-PTFE/NOMEX® membranes used in fire-protective clothing. The modification of water vapour permeability, morphology and chemical structure was examined by MOCON Permatran, electron microscopy scanning (SEM), and ATR-FTIR, respectively. A decrease in permeability to water vapour of the aged samples was observed following closure of transpiration pores. Analysis of fiber morphology indicates the appearance of defects at the fibers surface with the presence of micro cavities. ATR-FTIR analysis reveals the presence of a new absorption band attributed to carboxylic acid terminal groups generated during the amide bond hydrolysis.

Polymeric Sustained Biodegradable Patch Formulation for Wound Healing

It is the patient compliance and stability in combination with controlled drug delivery and biocompatibility that forms the core feature in present research and development of sustained biodegradable patch formulation intended for wound healing. The aim was to impart sustained degradation, sterile formulation, significant folding endurance, elasticity, biodegradability, bio-acceptability and strength. The optimized formulation comprised of polymers including Hydroxypropyl methyl cellulose, Ethylcellulose, and Gelatin, and Citric Acid PEG Citric acid (CPEGC) triblock dendrimers and active Curcumin. Polymeric mixture dissolved in geometric order in suitable medium through continuous stirring under ambient conditions. With continued stirring Curcumin was added with aid of DCM and Methanol in optimized ratio to get homogenous dispersion. The dispersion was sonicated with optimum frequency and for given time and later casted to form a patch form. All steps were carried out under strict aseptic conditions. The formulations obtained in the acceptable working range were decided based on thickness, uniformity of drug content, smooth texture and flexibility and brittleness. The patch kept on stability using butter paper in sterile pack displayed folding endurance in range of 20 to 23 times without any evidence of crack in an optimized formulation at room temperature (RT) (24 ± 2°C). The patch displayed acceptable parameters after stability study conducted in refrigerated conditions (8±0.2°C) and at RT (24 ± 2°C) up to 90 days. Further, no significant changes were observed in critical parameters such as elasticity, biodegradability, drug release and drug content during stability study conducted at RT 24±2°C for 45 and 90 days. The drug content was in range 95 to 102%, moisture content didn’t exceeded 19.2% and patch passed the content uniformity test. Percentage cumulative drug release was found to be 80% in 12h and matched the biodegradation rate as drug release with correlation factor R2>0.9. The biodegradable patch based formulation developed shows promising results in terms of stability and release profiles.

Bioremediation of Sewage Sludge Contaminated with Fluorene Using a Lipopeptide Biosurfactant

The disposal and the treatment of sewage sludge is an expensive and environmentally complex problem. In this work, a lipopeptide biosurfactant extracted from corn steep liquor was used as ecofriendly and cost-competitive alternative for the mobilization and bioremediation of fluorene in sewage sludge. Results have demonstrated that this biosurfactant has the capability to mobilize fluorene to the aqueous phase, reducing the amount of fluorene in the sewage sludge from 484.4 mg/Kg up to 413.7 mg/Kg and 196.0 mg/Kg after 1 and 27 days respectively. Furthermore, once the fluorene was extracted the lipopeptide biosurfactant contained in the aqueous phase allowed the biodegradation, up to 40.5% of the initial concentration of this polycyclic aromatic hydrocarbon.

An Initial Assessment of the Potential Contribution of ‘Community Empowerment’ to Mitigating the Drivers of Deforestation and Forest Degradation, in Giam Siak Kecil-Bukit Batu Biosphere Reserve

Indonesia has experienced annual forest fires that have rapidly destroyed and degraded its forests. Fires in the peat swamp forests of Riau Province, have set the stage for problems to worsen, this being the ecosystem most prone to fires (which are also the most difficult, to extinguish). Despite various efforts to curb deforestation, and forest degradation processes, severe forest fires are still occurring. To find an effective solution, the basic causes of the problems must be identified. It is therefore critical to have an indepth understanding of the underlying causal factors that have contributed to deforestation and forest degradation as a whole, in order to attain reductions in their rates. An assessment of the drivers of deforestation and forest degradation was carried out, in order to design and implement measures that could slow these destructive processes. Research was conducted in Giam Siak Kecil–Bukit Batu Biosphere Reserve (GSKBB BR), in the Riau Province of Sumatera, Indonesia. A biosphere reserve was selected as the study site because such reserves aim to reconcile conservation with sustainable development. A biosphere reserve should promote a range of local human activities, together with development values that are in line spatially and economically with the area conservation values, through use of a zoning system. Moreover, GSKBB BR is an area with vast peatlands, and is experiencing forest fires annually. Various factors were analysed to assess the drivers of deforestation and forest degradation in GSKBB BR; data were collected from focus group discussions with stakeholders, key informant interviews with key stakeholders, field observation and a literature review. Landsat satellite imagery was used to map forest-cover changes for various periods. Analysis of landsat images, taken during the period 2010-2014, revealed that within the non-protected area of core zone, there was a trend towards decreasing peat swamp forest areas, increasing land clearance, and increasing areas of community oilpalm and rubber plantations. Fire was used for land clearing and most of the forest fires occurred in the most populous area (the transition area). The study found a relationship between the deforested/ degraded areas, and certain distance variables, i.e. distance from roads, villages and the borders between the core area and the buffer zone. The further the distance from the core area of the reserve, the higher was the degree of deforestation and forest degradation. Research findings suggested that agricultural expansion may be the direct cause of deforestation and forest degradation in the reserve, whereas socio-economic factors were the underlying driver of forest cover changes; such factors consisting of a combination of sociocultural, infrastructural, technological, institutional (policy and governance), demographic (population pressure) and economic (market demand) considerations. These findings indicated that local factors/problems were the critical causes of deforestation and degradation in GSKBB BR. This research therefore concluded that reductions in deforestation and forest degradation in GSKBB BR could be achieved through ‘local actor’-tailored approaches such as community empowerment.

Investigation of Chord Protocol in Peer to Peer-Wireless Mesh Network with Mobility

File sharing in networks is generally achieved using Peer-to-Peer (P2P) applications. Structured P2P approaches are widely used in adhoc networks due to its distributed and scalability features. Efficient mechanisms are required to handle the huge amount of data distributed to all peers. The intrinsic characteristics of P2P system makes for easier content distribution when compared to client-server architecture. All the nodes in a P2P network act as both client and server, thus, distributing data takes lesser time when compared to the client-server method. CHORD protocol is a resource routing based where nodes and data items are structured into a 1- dimensional ring. The structured lookup algorithm of Chord is advantageous for distributed P2P networking applications. However, structured approach improves lookup performance in a high bandwidth wired network it could contribute to unnecessary overhead in overlay networks leading to degradation of network performance. In this paper, the performance of existing CHORD protocol on Wireless Mesh Network (WMN) when nodes are static and dynamic is investigated.

Influence of Synthetic Antioxidant in the Iodine Value and Acid Number of Jatropha Curcas Biodiesel

Biodiesel is one of the alternative fuels that promising for substituting petro diesel as energy source which is advantage on sustainability and ecofriendly. Due to the raw material that tend to decompose during storage, biodiesel also have the same characteristic that tend to decompose and formed higher acid value which is the result of oxidation to double bond on a chain of ester. Decomposition of biodiesel due to oxidation reaction could prevent by introduce a small amount of antioxidant. The origin of raw materials and the process for producing biodiesel will determine the effectiveness of antioxidant. The quality degradation on biodiesel could evaluate by measuring iodine value and acid number of biodiesel. Biodiesel made from high fatty acid Jatropha curcas oil by using esterification and transesterification process will stand on the quality by introduce 90 ppm pyrogallol powder on the biodiesel, which could increase Induction period time from 2 hours to more than 6 hours in rancimat test evaluation.

Deformation Characteristics of Fire Damaged and Rehabilitated Normal Strength Concrete Beams

In recent years, fire accidents have been steadily increased and the amount of property damage caused by the accidents has gradually raised. Damaging building structure, fire incidents bring about not only such property damage but also strength degradation and member deformation. As a result, the building structure undermines its structural ability. Examining the degradation and the deformation is very important because reusing the building is more economical than reconstruction. Therefore, engineers need to investigate the strength degradation and member deformation well, and make sure that they apply right rehabilitation methods. This study aims at evaluating deformation characteristics of fire damaged and rehabilitated normal strength concrete beams through both experiments and finite element analyses. For the experiments, control beams, fire damaged beams and rehabilitated beams are tested to examine deformation characteristics. Ten test beam specimens with compressive strength of 21MPa are fabricated and main test variables are selected as cover thickness of 40mm and 50mm and fire exposure time of 1 hour or 2 hours. After heating, fire damaged beams are air-recurred for 2 months and rehabilitated beams are repaired with polymeric cement mortar after being removed the fire damaged concrete cover. All beam specimens are tested under four points loading. FE analyses are executed to investigate the effects of main parameters applied to experimental study. Test results show that both maximum load and stiffness of the rehabilitated beams are higher than those of the fire damaged beams. In addition, predicted structural behaviors from the analyses also show good rehabilitation effect and the predicted load-deflection curves are similar to the experimental results. For the further, the proposed analytical method can be used to predict deformation characteristics of fire damaged and rehabilitated concrete beams without suffering from time and cost consuming of experimental process.

Use of Data of the Remote Sensing for Spatiotemporal Analysis Land Use Changes in the Eastern Aurès (Algeria)

Aurèsregion is one of the arid and semi-arid areas that have suffered climate crises and overexploitation of natural resources they have led to significant land degradation. The use of remote sensing data allowed us to analyze the land and its spatiotemporal changes in the Aurès between 1987 and 2013, for this work, we adopted a method of analysis based on the exploitation of the images satellite Landsat TM 1987 and Landsat OLI 2013, from the supervised classification likelihood coupled with field surveys of the mission of May and September of 2013. Using ENVI EX software by the superposition of the ground cover maps from 1987 and 2013, one can extract a spatial map change of different land cover units. The results show that between 1987 and 2013 vegetation has suffered negative changes are the significant degradation of forests and steppe rangelands, and sandy soils and bare land recorded a considerable increase. The spatial change map land cover units between 1987 and 2013 allows us to understand the extensive or regressive orientation of vegetation and soil, this map shows that dense forests give his place to clear forests and steppe vegetation develops from a degraded forest vegetation and bare, sandy soils earn big steppe surfaces that explain its remarkable extension. The analysis of remote sensing data highlights the profound changes in our environment over time and quantitative monitoring of the risk of desertification.

Kinetics Study for the Recombinant Cellulosome to the Degradation of Chlorella Cell Residuals

In this study, lipid-deprived residuals of microalgae were hydrolyzed for the production of reducing sugars by using the recombinant Bacillus cellulosome, carrying eight genes from the Clostridium thermocellum ATCC27405. The obtained cellulosome was found to exist mostly in the broth supernatant with a cellulosome activity of 2.4 U/mL. Furthermore, the Michaelis-Menten constant (Km) and Vmax of cellulosome were found to be 14.832 g/L and 3.522 U/mL. The activation energy of the cellulosome to hydrolyze microalgae LDRs was calculated as 32.804 kJ/mol.

Understanding and Enhancing Ecotourism Opportunities through Education

A new fast growing trend in tourism is ecotourism, in which tourists visit natural ecosystems under low impact, nonconsumptive and locally oriented activities. Through these activities species and habitats are maintained and typically, underdeveloped regions are emphasized. Ecotourism provides a great alternative, especially for rural and undeveloped area. At the same time, despite its many benefits, it also poses many risks for the naturally protected areas. If ecotourism is practiced improperly degradation and irreversible damages could be the unwanted result. In addition, the lack of MSc programs in the field of Ecotourism in Europe makes it a necessity to be developed. Such an MSc program is being implemented with the lead partner the Technical University of Madrid. The entire partnership has six Universities, seven SMEs and one National Park from seven different countries all over Europe. The MSc will have 10 educational modules that will be available online and will prepare professionals that will be able to implement ecotourism in a sustainable way. Only through awareness and education a sustainable ecotourism will be achieved in the protected areas of Europe.

Steady State and Accelerated Decay Rate Evaluations of Membrane Electrode Assembly of PEM Fuel Cells

Durability of Membrane Electrode Assembly for Proton Exchange Membrane Fuel Cells was evaluated in both steady state and accelerated decay modes. Steady state mode was carried out at constant current of 800mA/cm2 for 2500 hours using air as cathode feed and pure hydrogen as anode feed. The degradation of the cell voltage was 0.015V after such 2500 hrs operation. The degradation rate was therefore calculated to be 6uV/hr. Continuously Vigorous fluctuation of the cell voltage, which was switched between OCV and 0.2V, was employed for the accelerated decay mode. No obvious change in performance of the MEA was observed after 10000 cycles of such operation.

Influence of Hygro-Chemo-Mechanical Degradation on Performance of Concrete Gravity Dam

The degradation of concrete due to various hygrochemo- mechanical actions is inevitable for the structures particularly built to store water. Therefore, it is essential to determine the material properties of dam-like structures due to ageing to predict the behavior of such structures after a certain age. The degraded material properties are calculated by introducing isotropic degradation index. The predicted material properties are used to study the behavior of aged dam at different ages. The dam is modeled by finite elements and displacement and is considered as an unknown variable. The parametric study reveals that the displacement is quite larger for comparatively lower design life of the structure because the degradation of elastic properties depends on the design life of the dam. The stresses in dam cam be unexpectedly large at any age with in the design life. The outcomes of the present study indicate the importance of the consideration ageing effect of concrete exposed to water for the safe design of dam throughout its life time.

Fermentation of Xylose and Glucose Mixture in Intensified Reactors by Scheffersomyces stipitis to Produce Ethanol

In this work, two fermentations at different temperatures (25 and 30ºC), with cell recycling, were accomplished to produce ethanol, using a mix of commercial substrates, xylose (70%) and glucose (30%), as organic source for Scheffersomyces stipitis. Five consecutive fermentations of 80 g L-1 (1º, 2º and 3º recycles), 96 g L-1 (4º recycle) and 120 g L-1 (5º recycle)reduced sugars led to a final maximum ethanol concentration of 17.2 and 34.5 g L-1, at 25 and 30ºC, respectively. Glucose was the preferred substrate; moreover xylose startup degradation was initiated after a remaining glucose presence in the medium. Results showed that yeast acid treatment, performed before each cycle, provided improvements on cell viability, accompanied by ethanol productivity of 2.16 g L-1 h- 1 at 30ºC. A maximum 36% of xylose was retained in the fermentation medium and after five-cycle fermentation an ethanol yield of 0.43 g ethanol/g sugars was observed. S. stipitis fermentation capacity and tolerance showed better results at 30ºC with 83.4% of theoretical yield referenced on initial biomass.

Kinetic Study of Thermal Degradation of a Lignin Nanoparticle-Reinforced Phenolic Foam

In the present study, the kinetics of thermal degradation of a phenolic and lignin reinforced phenolic foams, and the lignin used as reinforcement were studied and the activation energies of their degradation processes were obtained by a DAEM model. The average values for five heating rates of the mean activation energies obtained were: 99.1, 128.2, and 144.0 kJ.mol-1 for the phenolic foam; 109.5, 113.3, and 153.0 kJ.mol-1 for the lignin reinforcement; and 82.1, 106.9, and 124.4 kJ.mol-1 for the lignin reinforced phenolic foam. The standard deviation ranges calculated for each sample were 1.27-8.85, 2.22-12.82, and 3.17-8.11 kJ.mol-1 for the phenolic foam, lignin and the reinforced foam, respectively. The DAEM model showed low mean square errors (

Earthquake Vulnerability and Repair Cost Estimation of Masonry Buildings in the Old City Center of Annaba, Algeria

The seismic risk mitigation from the perspective of the old buildings stock is truly essential in Algerian urban areas, particularly those located in seismic prone regions, such as Annaba city, and which the old buildings present high levels of degradation associated with no seismic strengthening and/or rehabilitation concerns. In this sense, the present paper approaches the issue of the seismic vulnerability assessment of old masonry building stocks through the adaptation of a simplified methodology developed for a European context area similar to that of Annaba city, Algeria. Therefore, this method is used for the first level of seismic vulnerability assessment of the masonry buildings stock of the old city center of Annaba. This methodology is based on a vulnerability index that is suitable for the evaluation of damage and for the creation of large-scale loss scenarios. Over 380 buildings were evaluated in accordance with the referred methodology and the results obtained were then integrated into a Geographical Information System (GIS) tool. Such results can be used by the Annaba city council for supporting management decisions, based on a global view of the site under analysis, which led to more accurate and faster decisions for the risk mitigation strategies and rehabilitation plans.

The High Temperature Damage of DV – 2 Turbine Blade Made from Ni – Base Superalloy

High pressure turbine (HPT) blades of DV – 2 jet engines are made from Ni – based superalloy. This alloy was originally manufactured in the Soviet Union and referred as ŽS6K. For improving alloy’s high temperature resistance are blades coated with Al – Si diffusion layer. A regular operation temperature of HPT blades vary from 705°C to 750°C depending on jet engine regime. An overcrossing working temperature range causes degradation of the protective coating as well as base material which microstructure is formed by the gamma matrix and strengthening phase gamma prime (forming small particles in the microstructure). Diffusion processes inside the material during exposition of the material to high temperatures causes mainly coarsening of the gamma prime particles, thus decreasing its strengthening effect. Degradation of the Al – Si coating caused its thickness growth. All the microstructure changes and coating layer thickness growth results in decreasing of the turbine blade operation lifetime.