SAF: A Substitution and Alignment Free Similarity Measure for Protein Sequences

The literature reports a large number of approaches for measuring the similarity between protein sequences. Most of these approaches estimate this similarity using alignment-based techniques that do not necessarily yield biologically plausible results, for two reasons. First, for the case of non-alignable (i.e., not yet definitively aligned and biologically approved) sequences such as multi-domain, circular permutation and tandem repeat protein sequences, alignment-based approaches do not succeed in producing biologically plausible results. This is due to the nature of the alignment, which is based on the matching of subsequences in equivalent positions, while non-alignable proteins often have similar and conserved domains in non-equivalent positions. Second, the alignment-based approaches lead to similarity measures that depend heavily on the parameters set by the user for the alignment (e.g., gap penalties and substitution matrices). For easily alignable protein sequences, it's possible to supply a suitable combination of input parameters that allows such an approach to yield biologically plausible results. However, for difficult-to-align protein sequences, supplying different combinations of input parameters yields different results. Such variable results create ambiguities and complicate the similarity measurement task. To overcome these drawbacks, this paper describes a novel and effective approach for measuring the similarity between protein sequences, called SAF for Substitution and Alignment Free. Without resorting either to the alignment of protein sequences or to substitution relations between amino acids, SAF is able to efficiently detect the significant subsequences that best represent the intrinsic properties of protein sequences, those underlying the chronological dependencies of structural features and biochemical activities of protein sequences. Moreover, by using a new efficient subsequence matching scheme, SAF more efficiently handles protein sequences that contain similar structural features with significant meaning in chronologically non-equivalent positions. To show the effectiveness of SAF, extensive experiments were performed on protein datasets from different databases, and the results were compared with those obtained by several mainstream algorithms.

A Weighted Sum Technique for the Joint Optimization of Performance and Power Consumption in Data Centers

With data centers, end-users can realize the pervasiveness of services that will be one day the cornerstone of our lives. However, data centers are often classified as computing systems that consume the most amounts of power. To circumvent such a problem, we propose a self-adaptive weighted sum methodology that jointly optimizes the performance and power consumption of any given data center. Compared to traditional methodologies for multi-objective optimization problems, the proposed self-adaptive weighted sum technique does not rely on a systematical change of weights during the optimization procedure. The proposed technique is compared with the greedy and LR heuristics for large-scale problems, and the optimal solution for small-scale problems implemented in LINDO. the experimental results revealed that the proposed selfadaptive weighted sum technique outperforms both of the heuristics and projects a competitive performance compared to the optimal solution.

Optimal Route Policy in Air Traffic Control with Competing Airlines

This work proposes a novel market-based air traffic flow control model considering competitive airlines in air traffic network. In the flow model, an agent based framework for resources (link/time pair) pricing is described. Resource agent and auctioneer for groups of resources are also introduced to simulate the flow management in Air Traffic Control (ATC). Secondly, the distributed group pricing algorithm is introduced, which efficiently reflect the competitive nature of the airline industry. Resources in the system are grouped according to the degree of interaction, and each auctioneer adjust s the price of one group of resources respectively until the excess demand of resources becomes zero when the demand and supply of resources of the system changes. Numerical simulation results show the feasibility of solving the air traffic flow control problem using market mechanism and pricing algorithms on the air traffic network.

Effect of Scene Changing on Image Sequences Compression Using Zero Tree Coding

We study in this paper the effect of the scene changing on image sequences coding system using Embedded Zerotree Wavelet (EZW). The scene changing considered here is the full motion which may occurs. A special image sequence is generated where the scene changing occurs randomly. Two scenarios are considered: In the first scenario, the system must provide the reconstruction quality as best as possible by the management of the bit rate (BR) while the scene changing occurs. In the second scenario, the system must keep the bit rate as constant as possible by the management of the reconstruction quality. The first scenario may be motivated by the availability of a large band pass transmission channel where an increase of the bit rate may be possible to keep the reconstruction quality up to a given threshold. The second scenario may be concerned by the narrow band pass transmission channel where an increase of the bit rate is not possible. In this last case, applications for which the reconstruction quality is not a constraint may be considered. The simulations are performed with five scales wavelet decomposition using the 9/7-tap filter bank biorthogonal wavelet. The entropy coding is performed using a specific defined binary code book and EZW algorithm. Experimental results are presented and compared to LEAD H263 EVAL. It is shown that if the reconstruction quality is the constraint, the system increases the bit rate to obtain the required quality. In the case where the bit rate must be constant, the system is unable to provide the required quality if the scene change occurs; however, the system is able to improve the quality while the scene changing disappears.

Mining Genes Relations in Microarray Data Combined with Ontology in Colon Cancer Automated Diagnosis System

MATCH project [1] entitle the development of an automatic diagnosis system that aims to support treatment of colon cancer diseases by discovering mutations that occurs to tumour suppressor genes (TSGs) and contributes to the development of cancerous tumours. The constitution of the system is based on a) colon cancer clinical data and b) biological information that will be derived by data mining techniques from genomic and proteomic sources The core mining module will consist of the popular, well tested hybrid feature extraction methods, and new combined algorithms, designed especially for the project. Elements of rough sets, evolutionary computing, cluster analysis, self-organization maps and association rules will be used to discover the annotations between genes, and their influence on tumours [2]-[11]. The methods used to process the data have to address their high complexity, potential inconsistency and problems of dealing with the missing values. They must integrate all the useful information necessary to solve the expert's question. For this purpose, the system has to learn from data, or be able to interactively specify by a domain specialist, the part of the knowledge structure it needs to answer a given query. The program should also take into account the importance/rank of the particular parts of data it analyses, and adjusts the used algorithms accordingly.

GODYS-PC: a Software Package for Modeling,Simulating and Analyzing Dynamic Systems

In this paper, we introduce GODYS-PC software package for modeling, simulating and analyzing dynamic systems. To illustrate the use of GODYS-PC we present a few examples which concern modeling and simulating of engineering systems. In order to compare GODYS-PC with widely used in academia and industry Simulink®, the same examples are provided both in GODYS-PC and Simulink®.

Convection through Light Weight Timber Constructions with Mineral Wool

The major part of light weight timber constructions consists of insulation. Mineral wool is the most commonly used insulation due to its cost efficiency and easy handling. The fiber orientation and porosity of this insulation material enables flowthrough. The air flow resistance is low. If leakage occurs in the insulated bay section, the convective flow may cause energy losses and infiltration of the exterior wall with moisture and particles. In particular the infiltrated moisture may lead to thermal bridges and growth of health endangering mould and mildew. In order to prevent this problem, different numerical calculation models have been developed. All models developed so far have a potential for completion. The implementation of the flow-through properties of mineral wool insulation may help to improve the existing models. Assuming that the real pressure difference between interior and exterior surface is larger than the prescribed pressure difference in the standard test procedure for mineral wool ISO 9053 / EN 29053, measurements were performed using the measurement setup for research on convective moisture transfer “MSRCMT". These measurements show, that structural inhomogeneities of mineral wool effect the permeability only at higher pressure differences, as applied in MSRCMT. Additional microscopic investigations show, that the location of a leak within the construction has a crucial influence on the air flow-through and the infiltration rate. The results clearly indicate that the empirical values for the acoustic resistance of mineral wool should not be used for the calculation of convective transfer mechanisms.

Fracture Location Characterizations of Dissimilar Friction Stir Welds

This paper reports the tensile fracture location characterizations of dissimilar friction stir welds between 5754 aluminium alloy and C11000 copper. The welds were produced using three shoulder diameter tools; namely, 15, 18 and 25 mm by varying the process parameters. The rotational speeds considered were 600, 950 and 1200 rpm while the feed rates employed were 50, 150 and 300 mm/min to represent the low, medium and high settings respectively. The tensile fracture locations were evaluated using the optical microscope to identify the fracture locations and were characterized. It was observed that 70% of the tensile samples failed in the Thermo Mechanically Affected Zone (TMAZ) of copper at the weld joints. Further evaluation of the fracture surfaces of the pulled tensile samples revealed that welds with low Ultimate Tensile Strength either have defects or intermetallics present at their joint interfaces.

Palmprint based Cancelable Biometric Authentication System

A cancelable palmprint authentication system proposed in this paper is specifically designed to overcome the limitations of the contemporary biometric authentication system. In this proposed system, Geometric and pseudo Zernike moments are employed as feature extractors to transform palmprint image into a lower dimensional compact feature representation. Before moment computation, wavelet transform is adopted to decompose palmprint image into lower resolution and dimensional frequency subbands. This reduces the computational load of moment calculation drastically. The generated wavelet-moment based feature representation is used to generate cancelable verification key with a set of random data. This private binary key can be canceled and replaced. Besides that, this key also possesses high data capture offset tolerance, with highly correlated bit strings for intra-class population. This property allows a clear separation of the genuine and imposter populations, as well as zero Equal Error Rate achievement, which is hardly gained in the conventional biometric based authentication system.

Database Development and Discrimination Algorithms for Membrane Protein Functions

We have developed a database for membrane protein functions, which has more than 3000 experimental data on functionally important amino acid residues in membrane proteins along with sequence, structure and literature information. Further, we have proposed different methods for identifying membrane proteins based on their functions: (i) discrimination of membrane transport proteins from other globular and membrane proteins and classifying them into channels/pores, electrochemical and active transporters, and (ii) β-signal for the insertion of mitochondrial β-barrel outer membrane proteins and potential targets. Our method showed an accuracy of 82% in discriminating transport proteins and 68% to classify them into three different transporters. In addition, we have identified a motif for targeting β-signal and potential candidates for mitochondrial β-barrel membrane proteins. Our methods can be used as effective tools for genome-wide annotations.

2D Image Processing for DSO Astrophotography

The new concept of two–dimensional (2D) image processing implementation for auto-guiding system is shown in this paper. It is dedicated to astrophotography and operates with astronomy CCD guide cameras or with self-guided dual-detector CCD cameras and ST4 compatible equatorial mounts. This idea was verified by MATLAB model, which was used to test all procedures and data conversions. Next the circuit prototype was implemented at Altera MAX II CPLD device and tested for real astronomical object images. The digital processing speed of CPLD prototype board was sufficient for correct equatorial mount guiding in real-time system.

Hot-Spot Blob Merging for Real-Time Image Segmentation

One of the major, difficult tasks in automated video surveillance is the segmentation of relevant objects in the scene. Current implementations often yield inconsistent results on average from frame to frame when trying to differentiate partly occluding objects. This paper presents an efficient block-based segmentation algorithm which is capable of separating partly occluding objects and detecting shadows. It has been proven to perform in real time with a maximum duration of 47.48 ms per frame (for 8x8 blocks on a 720x576 image) with a true positive rate of 89.2%. The flexible structure of the algorithm enables adaptations and improvements with little effort. Most of the parameters correspond to relative differences between quantities extracted from the image and should therefore not depend on scene and lighting conditions. Thus presenting a performance oriented segmentation algorithm which is applicable in all critical real time scenarios.

Characterization of Chemically Modified Biomass as a Coating Material for Controlled Released Urea by Contact Angle Measurement

Controlled release urea has become popular in agricultural industry as it helps to solve environmental issues and increase crop yield. Recently biomass was identified to replace the polymer used as a coating material in the conventional coated urea. In this paper spreading and contact angle of biomass droplet (lignin, cellulose and clay) on urea surface are investigated experimentally. There were two tests were conducted, sessile drop for contact angle measurement and pendant drop for contact angle measurement. A different concentration of biomass droplet was released from 30 mm above a substrate. Glass was used as a controlled substrate. Images were recorded as soon as the droplet impacted onto the urea before completely adsorb into the urea. Digitized droplets were then used to identify the droplet-s surface tension and contact angle. There is large difference observed between the low surface tension and high surface tension liquids, where the wetting and spreading diameter is higher for lower surface tension. From the contact angle results, the data showed that the biomass coating films were possible as wetting liquid (θ < 90º). Contact angle of biomass coating material gives good indication for the wettablity of a liquid on urea surface.

On the Operation Mechanism and Device Modeling of AlGaN/GaN High Electron Mobility Transistors (HEMTs)

In this work, the physical based device model of AlGaN/GaN high electron mobility transistors (HEMTs) has been established and the corresponding device operation behavior has been investigated also by using Sentaurus TCAD from Synopsys. Advanced AlGaN/GaN hetero-structures with GaN cap layer and AlN spacer have been considered and the GaN cap layer and AlN spacer are found taking important roles on the gate leakage blocking and off-state breakdown voltage enhancement.

Stability Optimization of Functionally Graded Pipes Conveying Fluid

This paper presents an exact analytical model for optimizing stability of thin-walled, composite, functionally graded pipes conveying fluid. The critical flow velocity at which divergence occurs is maximized for a specified total structural mass in order to ensure the economic feasibility of the attained optimum designs. The composition of the material of construction is optimized by defining the spatial distribution of volume fractions of the material constituents using piecewise variations along the pipe length. The major aim is to tailor the material distribution in the axial direction so as to avoid the occurrence of divergence instability without the penalty of increasing structural mass. Three types of boundary conditions have been examined; namely, Hinged-Hinged, Clamped- Hinged and Clamped-Clamped pipelines. The resulting optimization problem has been formulated as a nonlinear mathematical programming problem solved by invoking the MatLab optimization toolbox routines, which implement constrained function minimization routine named “fmincon" interacting with the associated eigenvalue problem routines. In fact, the proposed mathematical models have succeeded in maximizing the critical flow velocity without mass penalty and producing efficient and economic designs having enhanced stability characteristics as compared with the baseline designs.

Molecular Epidemiology and Genotyping of Bovine Viral Diarrhea Virus in Xinjiang Uygur Autonomous Region of China

As part of national epidemiological survey on bovine viral diarrhea virus (BVDV), a total of 274 dejecta samples were collected from 14 cattle farms in 8 areas of Xinjiang Uygur Autonomous Region in northwestern China. Total RNA was extracted from each sample, and 5--untranslated region (UTR) of BVDV genome was amplified by using two-step reverse transcriptase-polymerase chain reaction (RT-PCR). The PCR products were subsequently sequenced to study the genetic variations of BVDV in these areas. Among the 274 samples, 33 samples were found virus-positive. According to sequence analysis of the PCR products, the 33 samples could be arranged into 16 groups. All the sequences, however, were highly conserved with BVDV Osloss strains. The virus possessed theses sequences belonged to BVDV-1b subtype by phylogenetic analysis. Based on these data, we established a typing tree for BVDV in these areas. Our results suggested that BVDV-1b was a predominant subgenotype in northwestern China and no correlation between the genetic and geographical distances could be observed above the farm level.

Study of the Glucidic Fraction of Celtis Australis L, Crataegus Azarolus L, Crataegus Monogyna Jacq., Elaeagnus Angustifolia L. and Zizyphus Lotus L. Fruits

In Algeria, some fruit trees produce fruits in free nature. Such trees are Celtis australis, Crataegus azarolus, Crataegus monogyna and Zizyphus lotus. In spite of their appreciable consumption, their nutritional value remains unknown. The objective of this study is the determination of sugars in the pulpe and almond of the above fruits. The biochemical analysis shows that these fruits present interesting contents of soluble sugars which confers significant caloric intakes to them. As well as significant fibres which give them therapeutic and industrial benefits? The analysis of the almonds shows that it contains considerable contents of sugars which enable them to be an energetic food.

Constructing a Fuzzy Net Present Value Method to Evaluating the BOT Sport Facilities

This paper is to develop a fuzzy net present value (FNPV) method by taking vague cash flow and imprecise required rate of return into account for evaluating the value of the Build-Operate-Transfer (BOT) sport facilities. In order to clearly manifest a more realistic capital budgeting model based on the classical net present value (NPV) method, some uncertain financial elements in NPV formula will be fuzzified as triangular fuzzy numbers. Through the conscientious manipulation of fuzzy set theory, we will find that the proposed FNPV model is a more explicit extension of classical (crisp) model and could be more practicable for the financial managers to capture the essence of capital budgeting of sport facilities than non-fuzzy model.

On the Construction of m-Sequences via Primitive Polynomials with a Fast Identification Method

The paper provides an in-depth tutorial of mathematical construction of maximal length sequences (m-sequences) via primitive polynomials and how to map the same when implemented in shift registers. It is equally important to check whether a polynomial is primitive or not so as to get proper m-sequences. A fast method to identify primitive polynomials over binary fields is proposed where the complexity is considerably less in comparison with the standard procedures for the same purpose.

From Forbidden States to Linear Constraints

This paper deals with the problem of constructing constraints in non safe Petri Nets and then reducing the number of the constructed constraints. In a system, assigning some linear constraints to forbidden states is possible. Enforcing these constraints on the system prevents it from entering these states. But there is no a systematic method for assigning constraints to forbidden states in non safe Petri Nets. In this paper a useful method is proposed for constructing constraints in non safe Petri Nets. But when the number of these constraints is large enforcing them on the system may complicate the Petri Net model. So, another method is proposed for reducing the number of constructed constraints.