Kinematic Modeling and Workspace Analysis of a Spatial Cable Suspended Robot as Incompletely Restrained Positioning Mechanism

This article proposes modeling, simulation and kinematic and workspace analysis of a spatial cable suspended robot as incompletely Restrained Positioning Mechanism (IRPM). These types of robots have six cables equal to the number of degrees of freedom. After modeling, the kinds of workspace are defined then an statically reachable combined workspace for different geometric structures of fixed and moving platform is obtained. This workspace is defined as the situations of reference point of the moving platform (center of mass) which under external forces such as weight and with ignorance of inertial effects, the moving platform should be in static equilibrium under conditions that length of all cables must not be exceeded from the maximum value and all of cables must be at tension (they must have non-negative tension forces). Then the effect of various parameters such as the size of moving platform, the size of fixed platform, geometric configuration of robots, magnitude of applied forces and moments to moving platform on workspace of these robots with different geometric configuration are investigated. Obtained results should be effective in employing these robots under different conditions of applied wrench for increasing the workspace volume.

Protein Secondary Structure Prediction

Protein structure determination and prediction has been a focal research subject in the field of bioinformatics due to the importance of protein structure in understanding the biological and chemical activities of organisms. The experimental methods used by biotechnologists to determine the structures of proteins demand sophisticated equipment and time. A host of computational methods are developed to predict the location of secondary structure elements in proteins for complementing or creating insights into experimental results. However, prediction accuracies of these methods rarely exceed 70%.

Web Pages Aesthetic Evaluation Using Low-Level Visual Features

Web sites are rapidly becoming the preferred media choice for our daily works such as information search, company presentation, shopping, and so on. At the same time, we live in a period where visual appearances play an increasingly important role in our daily life. In spite of designers- effort to develop a web site which be both user-friendly and attractive, it would be difficult to ensure the outcome-s aesthetic quality, since the visual appearance is a matter of an individual self perception and opinion. In this study, it is attempted to develop an automatic system for web pages aesthetic evaluation which are the building blocks of web sites. Based on the image processing techniques and artificial neural networks, the proposed method would be able to categorize the input web page according to its visual appearance and aesthetic quality. The employed features are multiscale/multidirectional textural and perceptual color properties of the web pages, fed to perceptron ANN which has been trained as the evaluator. The method is tested using university web sites and the results suggested that it would perform well in the web page aesthetic evaluation tasks with around 90% correct categorization.

Static Headspace GC Method for Aldehydes Determination in Different Food Matrices

Aldehydes as secondary lipid oxidation products are highly specific to the oxidative degradation of particular polyunsaturated fatty acids present in foods. Gas chromatographic analysis of those volatile compounds has been widely used for monitoring of the deterioration of food products. Developed static headspace gas chromatography method using flame ionization detector (SHS GC FID) was applied to monitor the aldehydes present in processed foods such as bakery, meat and confectionary products. Five selected aldehydes were determined in samples without any sample preparation, except grinding for bakery and meat products. SHS–GC analysis allows the separation of propanal, pentanal, hexanal, heptanal and octanal, within 15min. Aldehydes were quantified in fresh and stored samples, and the obtained range of aldehydes in crackers was 1.62±0.05 – 9.95±0.05mg/kg, in sausages 6.62±0.46 – 39.16±0.39mg/kg; and in cocoa spread cream 0.48±0.01 – 1.13±0.02mg/kg. Referring to the obtained results, the following can be concluded, proposed method is suitable for different types of samples, content of aldehydes varies depending on the type of a sample, and differs in fresh and stored samples of the same type.

A Sub-mW Low Noise Amplifier for Wireless Sensor Networks

A 1.2 V, 0.61 mA bias current, low noise amplifier (LNA) suitable for low-power applications in the 2.4 GHz band is presented. Circuit has been implemented, laid out and simulated using a UMC 130 nm RF-CMOS process. The amplifier provides a 13.3 dB power gain a noise figure NF< 2.28 dB and a 1-dB compression point of -15.69 dBm, while dissipating 0.74 mW. Such performance make this design suitable for wireless sensor networks applications such as ZigBee.

Variance Based Component Analysis for Texture Segmentation

This paper presents a comparative analysis of a new unsupervised PCA-based technique for steel plates texture segmentation towards defect detection. The proposed scheme called Variance Based Component Analysis or VBCA employs PCA for feature extraction, applies a feature reduction algorithm based on variance of eigenpictures and classifies the pixels as defective and normal. While the classic PCA uses a clusterer like Kmeans for pixel clustering, VBCA employs thresholding and some post processing operations to label pixels as defective and normal. The experimental results show that proposed algorithm called VBCA is 12.46% more accurate and 78.85% faster than the classic PCA.

TRS: System for Recommending Semantic Web Service Composition Approaches

A large number of semantic web service composition approaches are developed by the research community and one is more efficient than the other one depending on the particular situation of use. So a close look at the requirements of ones particular situation is necessary to find a suitable approach to use. In this paper, we present a Technique Recommendation System (TRS) which using a classification of state-of-art semantic web service composition approaches, can provide the user of the system with the recommendations regarding the use of service composition approach based on some parameters regarding situation of use. TRS has modular architecture and uses the production-rules for knowledge representation.

A Rough-set Based Approach to Design an Expert System for Personnel Selection

Effective employee selection is a critical component of a successful organization. Many important criteria for personnel selection such as decision-making ability, adaptability, ambition, and self-organization are naturally vague and imprecise to evaluate. The rough sets theory (RST) as a new mathematical approach to vagueness and uncertainty is a very well suited tool to deal with qualitative data and various decision problems. This paper provides conceptual, descriptive, and simulation results, concentrating chiefly on human resources and personnel selection factors. The current research derives certain decision rules which are able to facilitate personnel selection and identifies several significant features based on an empirical study conducted in an IT company in Iran.

Prognostic and Diagnostic Modes of Mathematical Model for the Pre-operation of Suspended Sediment Transport model in Estuaries and Coastal areas

Both prognostic and diagnostic modes of a 3D baroclinic model in hydrodynamic and sediment transport models of the Princeton Ocean Model (POM) were conducted to separate prognose and diagnose effects of different hydrodynamic factors on transport of suspended sediment discharged from the rivers to the Gulf of Thailand (GoT). Both transport modes of suspended sediment distribution in the GoT were numerically simulated. It could be concluded that the suspended sediment discharged from the rivers around the GoT. Most of sediments in estuaries and coastal areas are deposited outside the GoT under the condition of wind-driven current, and very small amount of the sediments of them are transported faraway. On the basis of wind forcing, sediments from the lower GoT to the upper GoT are mainly transported south-northwestward and also continuously moved north-southwestward. An obvious 3D characteristic of suspended sediment transport is produced in the wind-driven current residual circulation condition. In this study, the transport patterns at the third layer are generally consistent with the typhoon-induced strong currents in two case studies of Typhoon Linda 1997. The case studies presented the prognostic and diagnostic modes during 00UTC28OCT1997 to 12UTC06NOV1997 in a short period with the current condition for pre-operation of the suspended sediment transport model in estuaries and coastal areas.

Two Undetectable On-line Dictionary Attacks on Debiao et al.’s S-3PAKE Protocol

In 2011, Debiao et al. pointed out that S-3PAKE protocol proposed by Lu and Cao for password-authenticated key exchange in the three-party setting is vulnerable to an off-line dictionary attack. Then, they proposed some countermeasures to eliminate the security vulnerability of the S-3PAKE. Nevertheless, this paper points out their enhanced S-3PAKE protocol is still vulnerable to undetectable on-line dictionary attacks unlike their claim.

Using the Combined Model of PROMETHEE and Fuzzy Analytic Network Process for Determining Question Weights in Scientific Exams through Data Mining Approach

Need for an appropriate system of evaluating students- educational developments is a key problem to achieve the predefined educational goals. Intensity of the related papers in the last years; that tries to proof or disproof the necessity and adequacy of the students assessment; is the corroborator of this matter. Some of these studies tried to increase the precision of determining question weights in scientific examinations. But in all of them there has been an attempt to adjust the initial question weights while the accuracy and precision of those initial question weights are still under question. Thus In order to increase the precision of the assessment process of students- educational development, the present study tries to propose a new method for determining the initial question weights by considering the factors of questions like: difficulty, importance and complexity; and implementing a combined method of PROMETHEE and fuzzy analytic network process using a data mining approach to improve the model-s inputs. The result of the implemented case study proves the development of performance and precision of the proposed model.

Gluten-Free Cookies Enriched with Blueberry Pomace: Optimization of Baking Process

With the aim of improving nutritional profile and antioxidant capacity of gluten-free cookies, blueberry pomace, by-product of juice production, was processed into a new food ingredient by drying and grinding and used for a gluten-free cookie formulation. Since the quality of a baked product is highly influenced by the baking conditions, the objective of this work was to optimize the baking time and thickness of dough pieces, by applying Response Surface Methodology (RSM) in order to obtain the best technological quality of the cookies. The experiments were carried out according to a Central Composite Design (CCD) by selecting the dough thickness and baking time as independent variables, while hardness, color parameters (L*, a* and b* values), water activity, diameter and short/long ratio were response variables. According to the results of RSM analysis, the baking time of 13.74min and dough thickness of 4.08mm was found to be the optimal for the baking temperature of 170°C. As similar optimal parameters were obtained by previously conducted experiment based on sensory analysis, response surface methodology (RSM) can be considered as a suitable approach to optimize the baking process.

The Turkish Version of Inventory of the Dimensions of Emerging Adulthood(The IDEA)

Emerging Adulthood, the period during ages 18 to 25, is a new conceptualitation proposed by Arnett which is especially prevalent in the industrialized countries. Turkey is basically a developing country having a young population structure. Investigating the presence of such a life period in such a culture might be helpful in understanding educational and psychological needs of people who are in their twenties. With the aim of investigating Emerging Adulthood in Turkey, a well-known instrument (IDEA, 2003) was adapted to Turkish language and Turkish culture. The scale was administered to 296 participants between 15 and 34 ages and validity and reliability were conducted. Exploratory factor analysis revealed three subscales. Reliability coefficients of the scale (Cronbach a) was found as .69. Test-retest reliability coefficients was found for the scale as .81. Finally, “The IDEA" with 20 items was obtained to be used in the Turkish population. The instrument is ready to be administered among Turkish young people for the investigation of transition to adulthood, and whether such a emerging adulthood period really existed.

Comparative Study of Ant Colony and Genetic Algorithms for VLSI Circuit Partitioning

This paper presents a comparative study of Ant Colony and Genetic Algorithms for VLSI circuit bi-partitioning. Ant colony optimization is an optimization method based on behaviour of social insects [27] whereas Genetic algorithm is an evolutionary optimization technique based on Darwinian Theory of natural evolution and its concept of survival of the fittest [19]. Both the methods are stochastic in nature and have been successfully applied to solve many Non Polynomial hard problems. Results obtained show that Genetic algorithms out perform Ant Colony optimization technique when tested on the VLSI circuit bi-partitioning problem.

Difference in Psychological Well-Being Based On Comparison of Religions: A Case Study in Pekan District, Pahang, Malaysia

The psychological well-being of a family is a subjective matter for evaluation, all the more when it involves the element of religions, whether Islam, Christianity, Buddhism or Hinduism. Each of these religions emphasises similar values and morals on family psychological well-being. This comparative study is specifically to determine the role of religion on family psychological well-being in Pekan district, Pahang, Malaysia. The study adopts a quantitative and qualitative mixed method design and considers a total of 412 samples of parents and children for the quantitative study, and 21 samples for the qualitative study. The quantitative study uses simple random sampling, whereas the qualitative sampling is purposive. The instrument for quantitative study is Ryff’s Psychological Well-being Scale and the qualitative study involves the construction of a guidelines protocol for in-depth interviews of respondents. The quantitative study uses the SPSS version .19 with One Way Anova, and the qualitative analysis is manual based on transcripts with specific codes and themes. The results show nonsignificance, that is, no significant difference among religions in all family psychological well-being constructs in the comparison of Islam, Christianity, Buddhism and Hinduism, thereby accepting a null hypothesis and rejecting an alternative hypothesis. The qualitative study supports the quantitative study, that is, all 21 respondents explain that no difference exists in psychological wellbeing in the comparison of teachings in all the religious mentioned. These implications may be used as guidelines for government and non-government bodies in considering religion as an important element in family psychological well-being in the long run. 

Hexagonal Honeycomb Sandwich Plate Optimization Using Gravitational Search Algorithm

Honeycomb sandwich panels are increasingly used in the construction of space vehicles because of their outstanding strength, stiffness and light weight properties. However, the use of honeycomb sandwich plates comes with difficulties in the design process as a result of the large number of design variables involved, including composite material design, shape and geometry. Hence, this work deals with the presentation of an optimal design of hexagonal honeycomb sandwich structures subjected to space environment. The optimization process is performed using a set of algorithms including the gravitational search algorithm (GSA). Numerical results are obtained and presented for a set of algorithms. The results obtained by the GSA algorithm are much better compared to other algorithms used in this study.

Human Facial Expression Recognition using MANFIS Model

Facial expression analysis plays a significant role for human computer interaction. Automatic analysis of human facial expression is still a challenging problem with many applications. In this paper, we propose neuro-fuzzy based automatic facial expression recognition system to recognize the human facial expressions like happy, fear, sad, angry, disgust and surprise. Initially facial image is segmented into three regions from which the uniform Local Binary Pattern (LBP) texture features distributions are extracted and represented as a histogram descriptor. The facial expressions are recognized using Multiple Adaptive Neuro Fuzzy Inference System (MANFIS). The proposed system designed and tested with JAFFE face database. The proposed model reports 94.29% of classification accuracy.

Improvement of Gas Turbine Performance Test in Combine Cycle

One of the important applications of gas turbines is their utilization for heat recovery steam generator in combine-cycle technology. Exhaust flow and energy are two key parameters for determining heat recovery steam generator performance which are mainly determined by the main gas turbine components performance data. For this reason a method was developed for determining the exhaust energy in the new edition of ASME PTC22. The result of this investigation shows that the method of standard has considerable error. Therefore in this paper a new method is presented for modifying of the performance calculation. The modified method is based on exhaust gas constituent analysis and combustion calculations. The case study presented here by two kind of General Electric gas turbine design data for validation of methodologies. The result shows that the modified method is more precise than the ASME PTC22 method. The exhaust flow calculation deviation from design data is 1.5-2 % by ASME PTC22 method so that the deviation regarding with modified method is 0.3-0.5%. Based on precision of analyzer instruments, the method can be suitable alternative for gas turbine standard performance test. In advance two methods are proposed based on known and unknown fuel in modified method procedure. The result of this paper shows that the difference between the two methods is below than %0.02. In according to reasonable esult of the second procedure (unknown fuel composition), the method can be applied to performance evaluation of gas turbine, so that the measuring cost and data gathering should be reduced.

A Previously Underappreciated Impact on Global Warming caused by the Geometrical and Physical Properties of desert sand

The previous researches focused on the influence of anthropogenic greenhouse gases exerting global warming, but not consider whether desert sand may warm the planet, this could be improved by accounting for sand's physical and geometric properties. Here we show, sand particles (because of their geometry) at the desert surface form an extended surface of up to 1 + π/4 times the planar area of the desert that can contact sunlight, and at shallow depths of the desert form another extended surface of at least 1 + π times the planar area that can contact air. Based on this feature, an enhanced heat exchange system between sunlight, desert sand, and air in the spaces between sand particles could be built up automatically, which can increase capture of solar energy, leading to rapid heating of the sand particles, and then the heating of sand particles will dramatically heat the air between sand particles. The thermodynamics of deserts may thus have contributed to global warming, especially significant to future global warming if the current desertification continues to expand.

RBF- based Meshless Method for Free Vibration Analysis of Laminated Composite Plates

The governing differential equations of laminated plate utilizing trigonometric shear deformation theory are derived using energy approach. The governing differential equations discretized by different radial basis functions are used to predict the free vibration behavior of symmetric laminated composite plates. Effect of orthotropy and span to thickness ratio on frequency parameter of simply supported laminated plate is presented. Numerical results show the accuracy and good convergence of radial basis functions.