Investigating the Impact of Wind Speed on Active and Reactive Power Penetration to the Distribution Network

Wind power is among the most actively developing distributed generation (DG) technology. Majority of the wind power based DG technologies employ wind turbine induction generators (WTIG) instead of synchronous generators, for the technical advantages like: reduced size, increased robustness, lower cost, and increased electromechanical damping. However, dynamic changes of wind speed make the amount of active/reactive power injected/drawn to a WTIG embedded distribution network highly variable. This paper analyzes the effect of wind speed changes on the active and reactive power penetration to the wind energy embedded distribution network. Four types of wind speed changes namely; constant, linear change, gust change and random change of wind speed are considered in the analysis. The study is carried out by three-phase, non-linear, dynamic simulation of distribution system component models. Results obtained from the investigation are presented and discussed.

Retail Inventory Management for Perishable Products with Two Bins Strategy

Perishable goods constitute a large portion of retailer inventory and lose value with time due to deterioration and/or obsolescence. Retailers dealing with such goods required considering the factors of short shelf life and the dependency of sales on inventory displayed in determining optimal procurement policy. Many retailers follow the practice of using two bins - primary bin sales fresh items at a list price and secondary bin sales unsold items at a discount price transferred from primary bin on attaining certain age. In this paper, mathematical models are developed for primary bin and for secondary bin that maximizes profit with decision variables of order quantities, optimal review period and optimal selling price at secondary bin. The demand rates in two bins are assumed to be deterministic and dependent on displayed inventory level, price and age but independent of each other. The validity of the model is shown by solving an example and the sensitivity analysis of the model is also reported.

The Radial Pulse Wave and Blood Viscosity

The aim of this study was to investigate the effect of blood viscosity on the radial pulse wave. For this, we obtained the radial pulse wave of 15 males with abnormal high hematocrit level and 47 males with normal hematocrit level at the age of thirties and forties. Various variables of the radial pulse wave between two groups were analyzed and compared by Student's T test. There are significant differences in several variables about height, time and area of the pulse wave. The first peak of the radial pulse wave was higher in abnormal high hematocrit group, but the third peak was higher and longer in normal hematocrit group. Our results suggest that the radial pulse wave can be used for diagnosis of high blood viscosity and more clinical application.

Analyzing the Fiscal Health of Local Governments in Taiwan: Evidence from Quantile Analysis

This paper develops the fiscal health index of 21 local governments in Taiwan over the 1984 to 2010 period. A quantile regression analysis was used to explore the extent that economic variables, political budget cycles, and legislative checks and balances, impact different quantiles of fiscal health index for a country over a sample period of time. Our findings suggest that local governments at the lower quantile are significantly benefited from political budget cycles and the increase in central government revenues, while legislative effective checks and balances and the increase in central government expenditures have a significantly negative effect on local fiscal health. When local governments are in the upper tail of the distribution, legislative checks and balances and growth in macroeconomics have significant and adverse effects on the fiscal health of local governments. However, increases in central government revenues have significant and positive effects on the health status of local government in Taiwan.

Preparation and Bioactivity Evaluation of Bone like Hydroxyapatite - Bioglass Composite

In this study, hydroxyapatite (HA) composites are prepared on addition of 30%CaO-30%P2O5-40%Na2 O based glass to pure HA, in proportion of 2, 5, and 10 wt %. Each composition was sintered over a range of temperatures. The quantitative phase analysis was carried out using XRD and the microstructures were studied using SEM. The density, microhardness, and compressive strength have shown increase with the increasing amount of glass addition. The resulting composites have chemical compositions that are similar to the inorganic constituent of the mineral part of bone, and constitutes trace elements like Na. X-ray diffraction showed no decomposition of HA to secondary phases, however, the glass reinforced-HA composites contained a HA phase and variable amounts of tricalcium phosphate phase, depending on the amount of bioglass added. The HA-composite material exhibited higher compressive strength compared to sintered HA. The HA composite reinforced with 10 wt % bioglass showed highest bioactivity level.

A Cooperative Multi-Robot Control Using Ad Hoc Wireless Network

In this paper, a Cooperative Multi-robot for Carrying Targets (CMCT) algorithm is proposed. The multi-robot team consists of three robots, one is a supervisor and the others are workers for carrying boxes in a store of 100×100 m2. Each robot has a self recharging mechanism. The CMCT minimizes robot-s worked time for carrying many boxes during day by working in parallel. That is, the supervisor detects the required variables in the same time another robots work with previous variables. It works with straightforward mechanical models by using simple cosine laws. It detects the robot-s shortest path for reaching the target position avoiding obstacles by using a proposed CMCT path planning (CMCT-PP) algorithm. It prevents the collision between robots during moving. The robots interact in an ad hoc wireless network. Simulation results show that the proposed system that consists of CMCT algorithm and its accomplished CMCT-PP algorithm achieves a high improvement in time and distance while performing the required tasks over the already existed algorithms.

Variable Input Range Continuous-time Switched Current Delta-sigma Analog Digital Converter for RFID CMOS Biosensor Applications

Continuous-time delta-sigma analog digital converter (ADC) for radio frequency identification (RFID) complementary metal oxide semiconductor (CMOS) biosensor has been reported. This delta-sigma ADC is suitable for digital conversion of biosensor signal because of small process variation, and variable input range. As the input range of continuous-time switched current delta-sigma ADC (Dynamic range : 50 dB) can be limited by using current reference, amplification of biosensor signal is unnecessary. The input range is switched to wide input range mode or narrow input range mode by command of current reference. When the narrow input range mode, the input range becomes ± 0.8 V. The measured power consumption is 5 mW and chip area is 0.31 mm^2 using 1.2 um standard CMOS process. Additionally, automatic input range detecting system is proposed because of RFID biosensor applications.

In Silico Analysis of Pax6 Interacting Proteins Indicates Missing Molecular Links in Development of Brain and Associated Disease

The PAX6, a transcription factor, is essential for the morphogenesis of the eyes, brain, pituitary and pancreatic islets. In rodents, the loss of Pax6 function leads to central nervous system defects, anophthalmia, and nasal hypoplasia. The haplo-insufficiency of Pax6 causes microphthalmia, aggression and other behavioral abnormalities. It is also required in brain patterning and neuronal plasticity. In human, heterozygous mutation of Pax6 causes loss of iris [aniridia], mental retardation and glucose intolerance. The 3- deletion in Pax6 leads to autism and aniridia. The phenotypes are variable in peneterance and expressivity. However, mechanism of function and interaction of PAX6 with other proteins during development and associated disease are not clear. It is intended to explore interactors of PAX6 to elucidated biology of PAX6 function in the tissues where it is expressed and also in the central regulatory pathway. This report describes In-silico approaches to explore interacting proteins of PAX6. The models show several possible proteins interacting with PAX6 like MITF, SIX3, SOX2, SOX3, IPO13, TRIM, and OGT. Since the Pax6 is a critical transcriptional regulator and master control gene of eye and brain development it might be interacting with other protein involved in morphogenesis [TGIF, TGF, Ras etc]. It is also presumed that matricelluar proteins [SPARC, thrombospondin-1 and osteonectin etc] are likely to interact during transport and processing of PAX6 and are somewhere its cascade. The proteins involved in cell survival and cell proliferation can also not be ignored.

SAF: A Substitution and Alignment Free Similarity Measure for Protein Sequences

The literature reports a large number of approaches for measuring the similarity between protein sequences. Most of these approaches estimate this similarity using alignment-based techniques that do not necessarily yield biologically plausible results, for two reasons. First, for the case of non-alignable (i.e., not yet definitively aligned and biologically approved) sequences such as multi-domain, circular permutation and tandem repeat protein sequences, alignment-based approaches do not succeed in producing biologically plausible results. This is due to the nature of the alignment, which is based on the matching of subsequences in equivalent positions, while non-alignable proteins often have similar and conserved domains in non-equivalent positions. Second, the alignment-based approaches lead to similarity measures that depend heavily on the parameters set by the user for the alignment (e.g., gap penalties and substitution matrices). For easily alignable protein sequences, it's possible to supply a suitable combination of input parameters that allows such an approach to yield biologically plausible results. However, for difficult-to-align protein sequences, supplying different combinations of input parameters yields different results. Such variable results create ambiguities and complicate the similarity measurement task. To overcome these drawbacks, this paper describes a novel and effective approach for measuring the similarity between protein sequences, called SAF for Substitution and Alignment Free. Without resorting either to the alignment of protein sequences or to substitution relations between amino acids, SAF is able to efficiently detect the significant subsequences that best represent the intrinsic properties of protein sequences, those underlying the chronological dependencies of structural features and biochemical activities of protein sequences. Moreover, by using a new efficient subsequence matching scheme, SAF more efficiently handles protein sequences that contain similar structural features with significant meaning in chronologically non-equivalent positions. To show the effectiveness of SAF, extensive experiments were performed on protein datasets from different databases, and the results were compared with those obtained by several mainstream algorithms.

Learning Classifier Systems Approach for Automated Discovery of Censored Production Rules

In the recent past Learning Classifier Systems have been successfully used for data mining. Learning Classifier System (LCS) is basically a machine learning technique which combines evolutionary computing, reinforcement learning, supervised or unsupervised learning and heuristics to produce adaptive systems. A LCS learns by interacting with an environment from which it receives feedback in the form of numerical reward. Learning is achieved by trying to maximize the amount of reward received. All LCSs models more or less, comprise four main components; a finite population of condition–action rules, called classifiers; the performance component, which governs the interaction with the environment; the credit assignment component, which distributes the reward received from the environment to the classifiers accountable for the rewards obtained; the discovery component, which is responsible for discovering better rules and improving existing ones through a genetic algorithm. The concatenate of the production rules in the LCS form the genotype, and therefore the GA should operate on a population of classifier systems. This approach is known as the 'Pittsburgh' Classifier Systems. Other LCS that perform their GA at the rule level within a population are known as 'Mitchigan' Classifier Systems. The most predominant representation of the discovered knowledge is the standard production rules (PRs) in the form of IF P THEN D. The PRs, however, are unable to handle exceptions and do not exhibit variable precision. The Censored Production Rules (CPRs), an extension of PRs, were proposed by Michalski and Winston that exhibit variable precision and supports an efficient mechanism for handling exceptions. A CPR is an augmented production rule of the form: IF P THEN D UNLESS C, where Censor C is an exception to the rule. Such rules are employed in situations, in which conditional statement IF P THEN D holds frequently and the assertion C holds rarely. By using a rule of this type we are free to ignore the exception conditions, when the resources needed to establish its presence are tight or there is simply no information available as to whether it holds or not. Thus, the IF P THEN D part of CPR expresses important information, while the UNLESS C part acts only as a switch and changes the polarity of D to ~D. In this paper Pittsburgh style LCSs approach is used for automated discovery of CPRs. An appropriate encoding scheme is suggested to represent a chromosome consisting of fixed size set of CPRs. Suitable genetic operators are designed for the set of CPRs and individual CPRs and also appropriate fitness function is proposed that incorporates basic constraints on CPR. Experimental results are presented to demonstrate the performance of the proposed learning classifier system.

Creep Transition in a Thin Rotating Disc Having Variable Density with Inclusion

Creep stresses and strain rates have been obtained for a thin rotating disc having variable density with inclusion by using Seth-s transition theory. The density of the disc is assumed to vary radially, i.e. ( ) 0 ¤ü ¤ü r/b m - = ; ¤ü 0 and m being real positive constants. It has been observed that a disc, whose density increases radially, rotates at higher angular speed, thus decreasing the possibility of a fracture at the bore, whereas for a disc whose density decreases radially, the possibility of a fracture at the bore increases.

RF Power Consumption Emulation Optimized with Interval Valued Homotopies

This paper presents a methodology towards the emulation of the electrical power consumption of the RF device during the cellular phone/handset transmission mode using the LTE technology. The emulation methodology takes the physical environmental variables and the logical interface between the baseband and the RF system as inputs to compute the emulated power dissipation of the RF device. The emulated power, in between the measured points corresponding to the discrete values of the logical interface parameters is computed as a polynomial interpolation using polynomial basis functions. The evaluation of polynomial and spline curve fitting models showed a respective divergence (test error) of 8% and 0.02% from the physically measured power consumption. The precisions of the instruments used for the physical measurements have been modeled as intervals. We have been able to model the power consumption of the RF device operating at 5MHz using homotopy between 2 continuous power consumptions of the RF device operating at the bandwidths 3MHz and 10MHz.

Methods of Estimating the Equilibrium Real Effective Exchange Rate (REER)

There are many debates now regarding undervalued and overvalued currencies currently traded on the world financial market. This paper contributes to these debates from a theoretical point of view. We present the three most commonly used methods of estimating the equilibrium real effective exchange rate (REER): macroeconomic balance approach, external sustainability approach and equilibrium real effective exchange rate approach in the reduced form. Moreover, we discuss key concepts of the calculation of the real exchange rate (RER) based on applied explanatory variables: nominal exchange rates, terms of trade and tradable and non-tradable goods. Last but not least, we discuss the three main driving forces behind real exchange rates movements which include terms of trade, relative productivity growth and the interest rate differential.

Unsteadiness Effects on Variable Thrust Nozzle Performance

The purpose of this paper is to elucidate the flow unsteady behavior for moving plug in convergent-divergent variable thrust nozzle. Compressible axisymmetric Navier-Stokes equations are used to study this physical phenomenon. Different velocities are set for plug to investigate the effect of plug movement on flow unsteadiness. Variation of mass flow rate and thrust are compared under two conditions: First, the plug is placed at different positions and flow is simulated to reach the steady state (quasi steady simulation) and second, the plug is moved with assigned velocity and flow simulation is coupled with plug movement (unsteady simulation). If plug speed is high enough and its movement time scale is at the same order of the flow time scale, variation of the mass flow rate and thrust level versus plug position demonstrate a vital discrepancy under the quasi steady and unsteady conditions. This phenomenon should be considered especially from response time viewpoints in thrusters design. 

Novel Intrinsic Conducting Polymer Current Limiting Device (CLD) for Surge Protection

In the past many uneconomic solutions for limitation and interruption of short-circuit currents in low power applications have been introduced, especially polymer switch based on the positive temperature coefficient of resistance (PCTR) concept. However there are many limitations in the active material, which consists of conductive fillers. This paper presents a significantly improved and simplified approach that replaces the existing current limiters with faster switching elements. Its elegance lies in the remarkable simplicity and low-cost processes of producing the device using polyaniline (PANI) doped with methane-sulfonic acid (MSA). Samples characterized as lying in the metallic and critical regimes of metal insulator transition have been studied by means of electrical performance in the voltage range from 1V to 5 V under different environmental conditions. Moisture presence is shown to increase the resistivity and also improved its current limiting performance. Additionally, the device has also been studied for electrical resistivity in the temperature range 77 K-300 K. The temperature dependence of the electrical conductivity gives evidence for a transport mechanism based on variable range hopping in three dimensions.

Using Artificial Neural Network to Predict Collisions on Horizontal Tangents of 3D Two-Lane Highways

The purpose of this study is mainly to predict collision frequency on the horizontal tangents combined with vertical curves using artificial neural network methods. The proposed ANN models are compared with existing regression models. First, the variables that affect collision frequency were investigated. It was found that only the annual average daily traffic, section length, access density, the rate of vertical curvature, smaller curve radius before and after the tangent were statistically significant according to related combinations. Second, three statistical models (negative binomial, zero inflated Poisson and zero inflated negative binomial) were developed using the significant variables for three alignment combinations. Third, ANN models are developed by applying the same variables for each combination. The results clearly show that the ANN models have the lowest mean square error value than those of the statistical models. Similarly, the AIC values of the ANN models are smaller to those of the regression models for all the combinations. Consequently, the ANN models have better statistical performances than statistical models for estimating collision frequency. The ANN models presented in this paper are recommended for evaluating the safety impacts 3D alignment elements on horizontal tangents.

Optimization of Fiber Rich Gluten-Free Cookie Formulation by Response Surface Methodology

Most of the commercial gluten free products are nutritionally inferior when compared to gluten containing counterparts as manufacturers most often use the refined flours and starches. So it is possible that people on gluten free diet have low intake of fibre content. The foxtail millet flour and copra meal are gluten free and have high fibre and protein contents. The formulation of fibre rich gluten free cookies was optimized by response surface methodology considering independent process variables as proportion of Foxtail millet (Setaria italica) flour in mixed flour, fat content and guar gum. The sugar, sodium chloride, sodium bicarbonates and water were added in fixed proportion as 60, 1.0, 0.4 and 20% of mixed flour weight, respectively. Optimum formulation obtained for maximum spread ratio, fibre content, surface L-value, overall acceptability and minimum breaking strength were 80% foxtail millet flour in mixed flour, 42.8 % fat content and 0.05% guar gum.

Histological Structure of the Thyroid Gland in Duck: A Light and Electron Microscopic Study

The present investigation aimed to study the histomorphometric characterizations of the thyroid gland of the duck. Five adult male and five adult female ducks were used in the experiment. Results showed that the overall histological structure of the thyroid gland of the duck were similar to those of the other vertebrae. The gland consisted of roughly spherical randomly distributed micro and macrofollicles with very little interstitial tissue between them. Each follicle is lined by a single layer of epithelial cells enclosing a cavity, the follicular cavity, which is filled with colloid. Ultrastructural findings showed that the apical surface of the follicular cells bears a variable number of short, irregularly distributed microvilli which are apparently more numerous on the columnar cells than on the lower, relatively inactive cells. Mitochondria and rough endoplasmic reticulum occupy the subnuclear region of the follicular cell, whereas the Golgi complex, free ribosomes and colloid droplets were found in the apical cytoplasm. At light or electron microscopic levels, there was no sex difference in histomorphometric characteristics of the thyroid glands.ls.

Sweethearting: The Complicity Relatives Theft CRT in Saudi Arabia

The study will search the level of existence of the sweethearting in Saudi Arabia's Supermarkets in Riyadh. Sweethearting occurs when frontline workers give unauthorized free or uncounted goods and services to customer-s conspirators. The store managers and /or security managers were asked about the sweethearting that occurs in the supermarkets. The characteristics of sweethearting in Riyadh stores were investigated. Two independent variables were related to the report of sweethearting. These independent variables are: The effect of store environment on sweethearting and the security techniques and loss prevention electronics techniques used. This study expected to shed the light about the level of sweethearting in Saudi Arabia and the factors behind it. This study will serve as an exploratory study for such phenomenon in Saudi Arabia as well as both descriptive for the characteristics of sweethearting and explanatory study to link between the environmental and security systems factors to sweethearting.

Optimal Solution of Constraint Satisfaction Problems

An optimal solution for a large number of constraint satisfaction problems can be found using the technique of substitution and elimination of variables analogous to the technique that is used to solve systems of equations. A decision function f(A)=max(A2) is used to determine which variables to eliminate. The algorithm can be expressed in six lines and is remarkable in both its simplicity and its ability to find an optimal solution. However it is inefficient in that it needs to square the updated A matrix after each variable elimination. To overcome this inefficiency the algorithm is analyzed and it is shown that the A matrix only needs to be squared once at the first step of the algorithm and then incrementally updated for subsequent steps, resulting in significant improvement and an algorithm complexity of O(n3).