A Fast HRRP Synthesis Algorithm with Sensing Dictionary in GTD Model

In the paper, a fast high-resolution range profile synthetic algorithm called orthogonal matching pursuit with sensing dictionary (OMP-SD) is proposed. It formulates the traditional HRRP synthetic to be a sparse approximation problem over redundant dictionary. As it employs a priori that the synthetic range profile (SRP) of targets are sparse, SRP can be accomplished even in presence of data lost. Besides, the computation complexity decreases from O(MNDK) flops for OMP to O(M(N + D)K) flops for OMP-SD by introducing sensing dictionary (SD). Simulation experiments illustrate its advantages both in additive white Gaussian noise (AWGN) and noiseless situation, respectively.

Design and Simulation Interface Circuit for Piezoresistive Accelerometers with Offset Cancellation Ability

This paper presents a new method for read out of the piezoresistive accelerometer sensors. The circuit works based on Instrumentation amplifier and it is useful for reducing offset In Wheatstone Bridge. The obtained gain is 645 with 1μv/°c Equivalent drift and 1.58mw power consumption. A Schmitt trigger and multiplexer circuit control output node. a high speed counter is designed in this work .the proposed circuit is designed and simulated In 0.18μm CMOS technology with 1.8v power supply.

Visual Object Tracking in 3D with Color Based Particle Filter

This paper addresses the problem of determining the current 3D location of a moving object and robustly tracking it from a sequence of camera images. The approach presented here uses a particle filter and does not perform any explicit triangulation. Only the color of the object to be tracked is required, but not any precisemotion model. The observation model we have developed avoids the color filtering of the entire image. That and the Monte Carlotechniques inside the particle filter provide real time performance.Experiments with two real cameras are presented and lessons learned are commented. The approach scales easily to more than two cameras and new sensor cues.

Controllable Electrical Power Plug Adapters Made As A ZigBee Wireless Sensor Network

Using Internet communication, new home electronics have functions of monitoring and control from remote. However in many case these electronics work as standalone, and old electronics are not followed. Then, we developed the total remote system include not only new electronics but olds. This systems node is a adapter of electrical power plug that embed relay switch and some sensors, and these nodes communicate with each other. the system server was build on the Internet, and users access to this system from web browsers. To reduce the cost to set up of this system, communication between adapters are used ZigBee wireless network instead of wired LAN cable[3]. From measured RSSI(received signal strength indicator) information between each nodes, the system can estimate roughly adapters were mounted on which room, and where in the room. So also it reduces the cost of mapping nodes. Using this system, energy saving and house monitoring are expected.

Sensitivity Analysis in Power Systems Reliability Evaluation

In this paper sensitivity analysis is performed for reliability evaluation of power systems. When examining the reliability of a system, it is useful to recognize how results change as component parameters are varied. This knowledge helps engineers to understand the impact of poor data, and gives insight on how reliability can be improved. For these reasons, a sensitivity analysis can be performed. Finally, a real network was used for testing the presented method.

Design, Manufacture and Test of a Solar Powered Audible Bird Scarer

The most common domestic birds live in Turkey are: crows (Corvus corone), pigeons (Columba livia), sparrows (Passer domesticus), starlings (Sturnus vulgaris) and blackbirds (Turdus merula). These birds give damage to the agricultural areas and make dirty the human life areas. In order to send away these birds, some different materials and methods such as chemicals, treatments, colored lights, flash and audible scarers are used. It is possible to see many studies about chemical methods in the literatures. However there is not enough works regarding audible bird scarers are reported in the literature. Therefore, a solar powered bird scarer was designed, manufactured and tested in this experimental investigation. Firstly, to understand the sensitive level of these domestic birds against to the audible scarer, many series preliminary studies were conducted. These studies showed that crows are the most resistant against to the audible bird scarer when compared with pigeons, sparrows, starlings and blackbirds. Therefore the solar powered audible bird scarer was tested on crows. The scarer was tested about one month during April- May, 2007. 18 different common known predators- sounds (voices or calls) of domestic birds from Falcon (Falco eleonorae), Falcon (Buteo lagopus), Eagle (Aquila chrysaetos), Montagu-s harrier (Circus pygargus) and Owl (Glaucidium passerinum) were selected for test of the scarer. It was seen from the results that the reaction of the birds was changed depending on the predators- sound type, camouflage of the scarer, sound quality and volume, loudspeaker play and pause periods in one application. In addition, it was also seen that the sound from Falcon (Buteo lagopus) was most effective on crows and the scarer was enough efficient.

Empirical Statistical Modeling of Rainfall Prediction over Myanmar

One of the essential sectors of Myanmar economy is agriculture which is sensitive to climate variation. The most important climatic element which impacts on agriculture sector is rainfall. Thus rainfall prediction becomes an important issue in agriculture country. Multi variables polynomial regression (MPR) provides an effective way to describe complex nonlinear input output relationships so that an outcome variable can be predicted from the other or others. In this paper, the modeling of monthly rainfall prediction over Myanmar is described in detail by applying the polynomial regression equation. The proposed model results are compared to the results produced by multiple linear regression model (MLR). Experiments indicate that the prediction model based on MPR has higher accuracy than using MLR.

Progressive AAM Based Robust Face Alignment

AAM has been successfully applied to face alignment, but its performance is very sensitive to initial values. In case the initial values are a little far distant from the global optimum values, there exists a pretty good possibility that AAM-based face alignment may converge to a local minimum. In this paper, we propose a progressive AAM-based face alignment algorithm which first finds the feature parameter vector fitting the inner facial feature points of the face and later localize the feature points of the whole face using the first information. The proposed progressive AAM-based face alignment algorithm utilizes the fact that the feature points of the inner part of the face are less variant and less affected by the background surrounding the face than those of the outer part (like the chin contour). The proposed algorithm consists of two stages: modeling and relation derivation stage and fitting stage. Modeling and relation derivation stage first needs to construct two AAM models: the inner face AAM model and the whole face AAM model and then derive relation matrix between the inner face AAM parameter vector and the whole face AAM model parameter vector. In the fitting stage, the proposed algorithm aligns face progressively through two phases. In the first phase, the proposed algorithm will find the feature parameter vector fitting the inner facial AAM model into a new input face image, and then in the second phase it localizes the whole facial feature points of the new input face image based on the whole face AAM model using the initial parameter vector estimated from using the inner feature parameter vector obtained in the first phase and the relation matrix obtained in the first stage. Through experiments, it is verified that the proposed progressive AAM-based face alignment algorithm is more robust with respect to pose, illumination, and face background than the conventional basic AAM-based face alignment algorithm.

Effect of Heat Treatment on the Portevin-Le Chatelier Effect of Al-2.5%Mg Alloy

An experimental study is presented on the effect of microstructural change on the Portevin-Le Chatelier effect behaviour of Al-2.5%Mg alloy. Tensile tests are performed on the as received and heat treated (at 400 ºC for 16 hours) samples for a wide range of strain rates. The serrations observed in the stress-time curve are investigated from statistical analysis point of view. Microstructures of the samples are characterized by optical metallography and X-ray diffraction. It is found that the excess vacancy generated due to heat treatment leads to decrease in the strain rate sensitivity and the increase in the number of stress drop occurrences per unit time during the PLC effect. The microstructural parameters like domain size, dislocation density have no appreciable effect on the PLC effect as far as the statistical behavior of the serrations is considered.

Experimental Study of Dynamic Characteristics of the Electromagnet Actuators with Linear Movement

An approach for experimental measurement of the dynamic characteristics of linear electromagnet actuators is presented. It uses accelerometer sensor to register the armature acceleration. The velocity and displacement of the moving parts can be obtained by integration of the acceleration results. The armature movement of permanent magnet linear actuator is acquired using this technique. The results are analyzed and the performance of the supposed approach is compared with the most commonly used experimental setup where the displacement of the armature vs. time is measured instead of its acceleration.

Presenting a Combinatorial Feature to Estimate Depth of Anesthesia

Determining depth of anesthesia is a challenging problem in the context of biomedical signal processing. Various methods have been suggested to determine a quantitative index as depth of anesthesia, but most of these methods suffer from high sensitivity during the surgery. A novel method based on energy scattering of samples in the wavelet domain is suggested to represent the basic content of electroencephalogram (EEG) signal. In this method, first EEG signal is decomposed into different sub-bands, then samples are squared and energy of samples sequence is constructed through each scale and time, which is normalized and finally entropy of the resulted sequences is suggested as a reliable index. Empirical Results showed that applying the proposed method to the EEG signals can classify the awake, moderate and deep anesthesia states similar to BIS.

Inclusion of Enterococcus Faecalis and Enterococcus Faecium to UF White Cheese

Lighvan cheese is basically made from sheep milk in the area of Sahand mountainside which is located in the North West of Iran. The main objective of this study was to investigate the effect of enterococci isolated from traditional Lighvan cheese on the quality of Iranian UF white during ripening. The experimental design was split plot based on randomized complete blocks, main plots were four types of starters and subplots were different ripening durations. Addition of Enterococcus spp. did not significantly (P

PoPCoRN: A Power-Aware Periodic Surveillance Scheme in Convex Region using Wireless Mobile Sensor Networks

In this paper, the periodic surveillance scheme has been proposed for any convex region using mobile wireless sensor nodes. A sensor network typically consists of fixed number of sensor nodes which report the measurements of sensed data such as temperature, pressure, humidity, etc., of its immediate proximity (the area within its sensing range). For the purpose of sensing an area of interest, there are adequate number of fixed sensor nodes required to cover the entire region of interest. It implies that the number of fixed sensor nodes required to cover a given area will depend on the sensing range of the sensor as well as deployment strategies employed. It is assumed that the sensors to be mobile within the region of surveillance, can be mounted on moving bodies like robots or vehicle. Therefore, in our scheme, the surveillance time period determines the number of sensor nodes required to be deployed in the region of interest. The proposed scheme comprises of three algorithms namely: Hexagonalization, Clustering, and Scheduling, The first algorithm partitions the coverage area into fixed sized hexagons that approximate the sensing range (cell) of individual sensor node. The clustering algorithm groups the cells into clusters, each of which will be covered by a single sensor node. The later determines a schedule for each sensor to serve its respective cluster. Each sensor node traverses all the cells belonging to the cluster assigned to it by oscillating between the first and the last cell for the duration of its life time. Simulation results show that our scheme provides full coverage within a given period of time using few sensors with minimum movement, less power consumption, and relatively less infrastructure cost.

Autonomous Virtual Agent Navigation in Virtual Environments

This paper presents a solution for the behavioural animation of autonomous virtual agent navigation in virtual environments. We focus on using Dempster-Shafer-s Theory of Evidence in developing visual sensor for virtual agent. The role of the visual sensor is to capture the information about the virtual environment or identifie which part of an obstacle can be seen from the position of the virtual agent. This information is require for vitual agent to coordinate navigation in virtual environment. The virual agent uses fuzzy controller as a navigation system and Fuzzy α - level for the action selection method. The result clearly demonstrates the path produced is reasonably smooth even though there is some sharp turn and also still not diverted too far from the potential shortest path. This had indicated the benefit of our method, where more reliable and accurate paths produced during navigation task.

Vibration Suppression of Timoshenko Beams with Embedded Piezoelectrics Using POF

This paper deals with the design of a periodic output feedback controller for a flexible beam structure modeled with Timoshenko beam theory, Finite Element Method, State space methods and embedded piezoelectrics concept. The first 3 modes are considered in modeling the beam. The main objective of this work is to control the vibrations of the beam when subjected to an external force. Shear piezoelectric sensors and actuators are embedded into the top and bottom layers of a flexible aluminum beam structure, thus making it intelligent and self-adaptive. The composite beam is divided into 5 finite elements and the control actuator is placed at finite element position 1, whereas the sensor is varied from position 2 to 5, i.e., from the nearby fixed end to the free end. 4 state space SISO models are thus developed. Periodic Output Feedback (POF) Controllers are designed for the 4 SISO models of the same plant to control the flexural vibrations. The effect of placing the sensor at different locations on the beam is observed and the performance of the controller is evaluated for vibration control. Conclusions are finally drawn.

Controlled Assembly of Magnetic Biomolecular Nanostructures

Two optimized strategies were successfully established to develop biomolecule-based magnetic nanoassemblies. Streptavidin-coated and amine-coated magnetic nanoparticles were chosen as model scaffolds onto which double-stranded DNA and human immunoglobulin G were specifically conjugated in succession, using biotin-streptavidin interaction or covalent cross-linkers. The success of this study opens the prospect of developing selective and sensitive nanoparticle-based structures for diagnostics or drug delivery.

Human Face Detection and Segmentation using Eigenvalues of Covariance Matrix, Hough Transform and Raster Scan Algorithms

In this paper we propose a novel method for human face segmentation using the elliptical structure of the human head. It makes use of the information present in the edge map of the image. In this approach we use the fact that the eigenvalues of covariance matrix represent the elliptical structure. The large and small eigenvalues of covariance matrix are associated with major and minor axial lengths of an ellipse. The other elliptical parameters are used to identify the centre and orientation of the face. Since an Elliptical Hough Transform requires 5D Hough Space, the Circular Hough Transform (CHT) is used to evaluate the elliptical parameters. Sparse matrix technique is used to perform CHT, as it squeeze zero elements, and have only a small number of non-zero elements, thereby having an advantage of less storage space and computational time. Neighborhood suppression scheme is used to identify the valid Hough peaks. The accurate position of the circumference pixels for occluded and distorted ellipses is identified using Bresenham-s Raster Scan Algorithm which uses the geometrical symmetry properties. This method does not require the evaluation of tangents for curvature contours, which are very sensitive to noise. The method has been evaluated on several images with different face orientations.

Characterization of Responsivity, Sensitivity and Spectral Response in Thin Film SOI photo-BJMOS -FET Compatible with CMOS Technology

Photo-BJMOSFET (Bipolar Junction Metal-Oxide- Semiconductor Field Effect Transistor) fabricated on SOI film was proposed. ITO film is adopted in the device as gate electrode to reduce light absorption. Depletion region but not inversion region is formed in film by applying gate voltage (but low reverse voltage) to achieve high photo-to-dark-current ratio. Comparisons of photoelectriccharacteristics executed among VGK=0V, 0.3V, 0.6V, 0.9V and 1.0V (reverse voltage VAK is equal to 1.0V for total area of 10×10μm2). The results indicate that the greatest improvement in photo-to-dark-current ratio is achieved up to 2.38 at VGK=0.6V. In addition, photo-BJMOSFET is compatible with CMOS integration due to big input resistance

Road Extraction Using Stationary Wavelet Transform

In this paper, a novel road extraction method using Stationary Wavelet Transform is proposed. To detect road features from color aerial satellite imagery, Mexican hat Wavelet filters are used by applying the Stationary Wavelet Transform in a multiresolution, multi-scale, sense and forming the products of Wavelet coefficients at a different scales to locate and identify road features at a few scales. In addition, the shifting of road features locations is considered through multiple scales for robust road extraction in the asymmetry road feature profiles. From the experimental results, the proposed method leads to a useful technique to form the basis of road feature extraction. Also, the method is general and can be applied to other features in imagery.

Design and Analysis of an Automobile Bumper with the Capacity of Energy Release Using GMT Materials

Bumpers play an important role in preventing the impact energy from being transferred to the automobile and passengers. Saving the impact energy in the bumper to be released in the environment reduces the damages of the automobile and passengers. The goal of this paper is to design a bumper with minimum weight by employing the Glass Material Thermoplastic (GMT) materials. This bumper either absorbs the impact energy with its deformation or transfers it perpendicular to the impact direction. To reach this aim, a mechanism is designed to convert about 80% of the kinetic impact energy to the spring potential energy and release it to the environment in the low impact velocity according to American standard1. In addition, since the residual kinetic energy will be damped with the infinitesimal elastic deformation of the bumper elements, the passengers will not sense any impact. It should be noted that in this paper, modeling, solving and result-s analysis are done in CATIA, LS-DYNA and ANSYS V8.0 software respectively.