Heat Transfer Analysis of Rectangular Channel Plate Heat Sink

In order to improve the simulation effects of space cold black environment, this paper described a rectangular channel plate heat sink. By using fluid mechanics theory and finite element method, the internal fluid flow and heat transfer in heat sink was numerically simulated to analyze the impact of channel structural on fluid flow and heat transfer. The result showed that heat sink temperature uniformity is well, and the impact of channel structural on the heat sink temperature uniformity is not significant. The channel depth and spacing are important factors which affect the fluid flow and heat transfer in the heat sink. The two factors of heat transfer and resistance need to be considered comprehensively to determine the optimal flow structure parameters.

Study on Numerical Simulation Applied to Moisture Buffering Design Method – The Case Study of Pine Wood in a Single Zone Residential Unit in Taiwan

A good green building design project, designers should consider not only energy consumption, but also healthy and comfortable needs of inhabitants. In recent years, the Taiwan government paid attentions on both carbon reduction and indoor air quality issues, which be presented in the legislation of Building Codes and other regulations. Taiwan located in hot and humid climates, dampness in buildings leads to significant microbial pollution and building damage. This means that the high temperature and humidity present a serious indoor air quality issue. The interactions between vapor transfers and energy fluxes are essential for the whole building Heat Air and Moisture (HAM) response. However, a simulation tool with short calculation time, property accuracy and interface is needed for practical building design processes. In this research, we consider the vapor transfer phenomenon of building materials as well as temperature and humidity and energy consumption in a building space. The simulation bases on the EMPD method, which was performed by EnergyPlus, a simulation tool developed by DOE, to simulate the indoor moisture variation in a one-zone residential unit based on the Effective Moisture Penetration Depth Method, which is more suitable for practical building design processes.

Approximate Solutions to Large Stein Matrix Equations

In the present paper, we propose numerical methods for solving the Stein equation AXC - X - D = 0 where the matrix A is large and sparse. Such problems appear in discrete-time control problems, filtering and image restoration. We consider the case where the matrix D is of full rank and the case where D is factored as a product of two matrices. The proposed methods are Krylov subspace methods based on the block Arnoldi algorithm. We give theoretical results and we report some numerical experiments.

Restarted GMRES Method Augmented with the Combination of Harmonic Ritz Vectors and Error Approximations

Restarted GMRES methods augmented with approximate eigenvectors are widely used for solving large sparse linear systems. Recently a new scheme of augmenting with error approximations is proposed. The main aim of this paper is to develop a restarted GMRES method augmented with the combination of harmonic Ritz vectors and error approximations. We demonstrate that the resulted combination method can gain the advantages of two approaches: (i) effectively deflate the small eigenvalues in magnitude that may hamper the convergence of the method and (ii) partially recover the global optimality lost due to restarting. The effectiveness and efficiency of the new method are demonstrated through various numerical examples.

Face Tracking using a Polling Strategy

The colors of the human skin represent a special category of colors, because they are distinctive from the colors of other natural objects. This category is found as a cluster in color spaces, and the skin color variations between people are mostly due to differences in the intensity. Besides, the face detection based on skin color detection is a faster method as compared to other techniques. In this work, we present a system to track faces by carrying out skin color detection in four different color spaces: HSI, YCbCr, YES and RGB. Once some skin color regions have been detected for each color space, we label each and get some characteristics such as size and position. We are supposing that a face is located in one the detected regions. Next, we compare and employ a polling strategy between labeled regions to determine the final region where the face effectively has been detected and located.

Automation of Packing Cell in Fresh Fish Facilities

The problem discussed in this paper involves packing fresh fish fileet of the northern Cod into a standard square container. The fish is first cleaned and split and then collected on a belt ready to be stacked in a container. The aim of our work is to pack the fish into the container with constraints on the amount of overlap allowed for the fileets. The current focus is to design a packing cell that can be real-time and of practical use, while finding the optimal solution to the degree of overlap and minimise the unused space of the container.

A Robust Extrapolation Method for Curtailed Aperture Reconstruction in Acoustic Imaging

Acoustic Imaging based sound localization using microphone array is a challenging task in digital-signal processing. Discrete Fourier transform (DFT) based near-field acoustical holography (NAH) is an important acoustical technique for sound source localization and provide an efficient solution to the ill-posed problem. However, in practice, due to the usage of small curtailed aperture and its consequence of significant spectral leakage, the DFT could not reconstruct the active-region-of-sound (AROS) effectively, especially near the edges of aperture. In this paper, we emphasize the fundamental problems of DFT-based NAH, provide a solution to spectral leakage effect by the extrapolation based on linear predictive coding and 2D Tukey windowing. This approach has been tested to localize the single and multi-point sound sources. We observe that incorporating extrapolation technique increases the spatial resolution, localization accuracy and reduces spectral leakage when small curtail aperture with a lower number of sensors accounts.

Ageing Assessment of Insulation Systems by Absorption/Resorption Currents

Degradation of polymeric insulation systems of electrical equipments increases the space charge density and the concentration of electrical dipoles. By consequence, the maximum values and the slopes of absorption/resorption (A/R) currents can change with insulation systems ageing. In this paper, an analysis of the nature of the A/R currents and the importance of their components, especially the polarization current and the current given by the space charge, is presented. The experimental study concerns the A/R currents measurements of plane samples (made from CALMICAGLAS tapes), virgin and thermally accelerated aged. The obtained results show that the ageing process produces an increase of the values and a decrease of shapes of the A/R currents. Finally, the possibility of estimating insulations ageing state and lifetime from A/R currents measurements is discussed.

An Optimal Control Problem for Rigid Body Motions on Lie Group SO(2, 1)

In this paper smooth trajectories are computed in the Lie group SO(2, 1) as a motion planning problem by assigning a Frenet frame to the rigid body system to optimize the cost function of the elastic energy which is spent to track a timelike curve in Minkowski space. A method is proposed to solve a motion planning problem that minimize the integral of the square norm of Darboux vector of a timelike curve. This method uses the coordinate free Maximum Principle of Optimal control and results in the theory of integrable Hamiltonian systems. The presence of several conversed quantities inherent in these Hamiltonian systems aids in the explicit computation of the rigid body motions.

A Computational Stochastic Modeling Formalism for Biological Networks

Stochastic models of biological networks are well established in systems biology, where the computational treatment of such models is often focused on the solution of the so-called chemical master equation via stochastic simulation algorithms. In contrast to this, the development of storage-efficient model representations that are directly suitable for computer implementation has received significantly less attention. Instead, a model is usually described in terms of a stochastic process or a "higher-level paradigm" with graphical representation such as e.g. a stochastic Petri net. A serious problem then arises due to the exponential growth of the model-s state space which is in fact a main reason for the popularity of stochastic simulation since simulation suffers less from the state space explosion than non-simulative numerical solution techniques. In this paper we present transition class models for the representation of biological network models, a compact mathematical formalism that circumvents state space explosion. Transition class models can also serve as an interface between different higher level modeling paradigms, stochastic processes and the implementation coded in a programming language. Besides, the compact model representation provides the opportunity to apply non-simulative solution techniques thereby preserving the possible use of stochastic simulation. Illustrative examples of transition class representations are given for an enzyme-catalyzed substrate conversion and a part of the bacteriophage λ lysis/lysogeny pathway.

Investigation of Various PWM Techniques for Shunt Active Filter

Pulse width modulation (PWM) techniques have been the subject of intensive research for different industrial and power sector applications. A large variety of methods, different in concept and performance, have been newly developed and described. This paper analyzes the comparative merits of Sinusoidal Pulse Width Modulation (SPWM) and Space Vector Pulse Width Modulation (SVPWM) techniques and the suitability of these techniques in a Shunt Active Filter (SAF). The objective is to select the scheme that offers effective utilization of DC bus voltage and also harmonic reduction at the input side. The effectiveness of the PWM techniques is tested in the SAF configuration with a non linear load. The performance of the SAF with the SPWM and (SVPWM) techniques are compared with respect to the THD in source current. The study reveals that in the context of closed loop SAF control with the SVPWM technique there is only a minor improvement in THD. The utilization of the DC bus with SVPWM is also not significant compared to that with SPWM because of the non sinusoidal modulating signal from the controller in SAF configuration.

Amberlite XAD-4 Functionalized with 1-amino-2-naphthole for Determination and Preconcentration of Copper (II) in Aqueous Solution by Flame Atomic Absorption Spectrometry

A new chelating resin is prepared by coupling Amberlite XAD-4 with 1-amino-2-naphthole through an azo spacer. The resulting sorbent has been characterized by FT-IR, elemental analysis and thermogravimetric analysis (TGA) and studied for preconcentrating of Cu (II) using flame atomic absorption spectrometry (FAAS) for metal monitoring. The optimum pH value for sorption of the copper ions was 6.5. The resin was subjected to evaluation through batch binding of mentioned metal ion. Quantitative desorption occurs instantaneously with 0.5 M HNO3. The sorption capacity was found 4.8 mmol.g-1 of resin for Cu (II) in the aqueous solution. The chelating resin can be reused for 10 cycles of sorption-desorption without any significant change in sorption capacity. A recovery of 99% was obtained the metal ions with 0.5 M HNO3 as eluting agent. The method was applied for metal ions determination from industrial waste water sample.

Palmprint Recognition by Wavelet Transform with Competitive Index and PCA

This manuscript presents, palmprint recognition by combining different texture extraction approaches with high accuracy. The Region of Interest (ROI) is decomposed into different frequencytime sub-bands by wavelet transform up-to two levels and only the approximate image of two levels is selected, which is known as Approximate Image ROI (AIROI). This AIROI has information of principal lines of the palm. The Competitive Index is used as the features of the palmprint, in which six Gabor filters of different orientations convolve with the palmprint image to extract the orientation information from the image. The winner-take-all strategy is used to select dominant orientation for each pixel, which is known as Competitive Index. Further, PCA is applied to select highly uncorrelated Competitive Index features, to reduce the dimensions of the feature vector, and to project the features on Eigen space. The similarity of two palmprints is measured by the Euclidean distance metrics. The algorithm is tested on Hong Kong PolyU palmprint database. Different AIROI of different wavelet filter families are also tested with the Competitive Index and PCA. AIROI of db7 wavelet filter achievs Equal Error Rate (EER) of 0.0152% and Genuine Acceptance Rate (GAR) of 99.67% on the palm database of Hong Kong PolyU.

Survey of Curriculum Quality of Postgraduate Studies of Insurance Management Field Case: University of Allameh Taba Tabaee

Curriculum is one of the most important inputs in higher education system and for knowing the strong and weak spots of it we need evaluation. The main purpose of this study was to survey of the curriculum quality of Insurance Management field. Case: University of Allameh Taba Tabaee(according to view point of students,alumni,employer and faculty members).Descriptive statistics (mean, tables, percentages, frequency distribution) and inferential statistics (CHI SQUARE) were used to analyze the data. Six criterions considered for the Quality of curriculum: objectives, content, teaching and learning methods, space and facilities, Time, assessment of learning. objectives, teaching and learning methods criterions was desirable level, content criteria was undesirable level, space and facilities, time and assessment of learning were rather desirable level. The quality of curriculum of insurance management field was relatively desirable level.

A Hybrid Feature Selection by Resampling, Chi squared and Consistency Evaluation Techniques

In this paper a combined feature selection method is proposed which takes advantages of sample domain filtering, resampling and feature subset evaluation methods to reduce dimensions of huge datasets and select reliable features. This method utilizes both feature space and sample domain to improve the process of feature selection and uses a combination of Chi squared with Consistency attribute evaluation methods to seek reliable features. This method consists of two phases. The first phase filters and resamples the sample domain and the second phase adopts a hybrid procedure to find the optimal feature space by applying Chi squared, Consistency subset evaluation methods and genetic search. Experiments on various sized datasets from UCI Repository of Machine Learning databases show that the performance of five classifiers (Naïve Bayes, Logistic, Multilayer Perceptron, Best First Decision Tree and JRIP) improves simultaneously and the classification error for these classifiers decreases considerably. The experiments also show that this method outperforms other feature selection methods.

Space Vector PWM Simulation for Three Phase DC/AC Inverter

Space Vector Pulse Width Modulation SVPWM is one of the most used techniques to generate sinusoidal voltage and current due to its facility and efficiency with low harmonics distortion. This algorithm is specially used in power electronic applications. This paper describes simulation algorithm of SVPWM & SPWM using MatLab/simulink environment. It also implements a closed loop three phases DC-AC converter controlling its outputs voltages amplitude and frequency using MatLab. Also comparison between SVPWM & SPWM results is given.

Leatherback Turtle (Dermochelys coriacea) after Incubation Eggshell in Andaman Sea, Thailand Study: Microanalysis on Ultrastructure and Elemental Composition

There are few studies on eggshell of leatherback turtle which is endangered species in Thailand. This study was focusing on the ultrastructure and elemental composition of leatherback turtle eggshells collected from Andaman Sea Shore, Thailand during the nesting season using scanning electron microscope (SEM). Three eggshell layers of leatherback turtle; the outer cuticle layer or calcareous layer, the middle layer or middle multistrata layer and the inner fibrous layer were recognized. The outer calcareous layer was thick and porosity which consisted of loose nodular units of various crystal shapes and sizes. The loose attachment between these units resulted in numerous spaces and openings. The middle layer was compact thick with several multistrata and contained numerous openings connecting to both outer cuticle layer and inner fibrous layer. The inner fibrous layer was compact and thin, and composed of numerous reticular fibers. Energy dispersive X-ray microanalysis detector revealed energy spectrum of X-rays character emitted from all elements on each layer. The percentages of all elements were found in the following order: carbon (C) > oxygen (O) > calcium (Ca) > sulfur (S) > potassium (K) > aluminum (Al) > iodine (I) > silicon (Si) > chlorine (Cl) > sodium (Na) > fluorine (F) > phosphorus (P) > magnesium (Mg). Each layer consisted of high percentage of CaCO3 (approximately 98%) implying that it was essential for turtle embryonic development. A significant difference was found in the percentages of Ca and Mo in the 3layers. Moreover, transition metal, metal and toxic non-metal contaminations were found in leatherback turtle eggshell samples. These were palladium (Pd), molybdenum (Mo), copper (Cu), aluminum (Al), lead (Pb), and bromine (Br). The contamination elements were seen in the outer layers except for Mo. All elements were readily observed and mapped using Smiling program. X-ray images which mapped the location of all elements were showed. Calcium containing in the eggshell appeared in high contents and was widely distributing in clusters of the outer cuticle layer to form CaCO3 structure. Moreover, the accumulation of Na and Cl was observed to form NaCl which was widely distributing in 3 eggshell layers. The results from this study would be valuable on assessing the emergent success in this endangered species.

Specifying Strict Serializability of Iterated Transactions in Propositional Temporal Logic

We present an operator for a propositional linear temporal logic over infinite schedules of iterated transactions, which, when applied to a formula, asserts that any schedule satisfying the formula is serializable. The resulting logic is suitable for specifying and verifying consistency properties of concurrent transaction management systems, that can be defined in terms of serializability, as well as other general safety and liveness properties. A strict form of serializability is used requiring that, whenever the read and write steps of a transaction occurrence precede the read and write steps of another transaction occurrence in a schedule, the first transaction must precede the second transaction in an equivalent serial schedule. This work improves on previous work in providing a propositional temporal logic with a serializability operator that is of the same PSPACE complete computational complexity as standard propositional linear temporal logic without a serializability operator.

Highly Scalable, Reversible and Embedded Image Compression System

A new method for low complexity image coding is presented, that permits different settings and great scalability in the generation of the final bit stream. This coding presents a continuoustone still image compression system that groups loss and lossless compression making use of finite arithmetic reversible transforms. Both transformation in the space of color and wavelet transformation are reversible. The transformed coefficients are coded by means of a coding system in depending on a subdivision into smaller components (CFDS) similar to the bit importance codification. The subcomponents so obtained are reordered by means of a highly configure alignment system depending on the application that makes possible the re-configure of the elements of the image and obtaining different levels of importance from which the bit stream will be generated. The subcomponents of each level of importance are coded using a variable length entropy coding system (VBLm) that permits the generation of an embedded bit stream. This bit stream supposes itself a bit stream that codes a compressed still image. However, the use of a packing system on the bit stream after the VBLm allows the realization of a final highly scalable bit stream from a basic image level and one or several enhance levels.