Effect of Endplate Shape on Performance and Stability of Wings-in Ground (WIG) Craft

Numerical analysis for the aerodynamic characteristics of the WIG (wing-in ground effect) craft with highly cambered and aspect ratio of one is performed to predict the ground effect for the case of with- and without- lower-extension endplate. The analysis is included varying angles of attack from 0 to10 deg. and ground clearances from 5% of chord to 50%. Due to the ground effect, the lift by rising in pressure on the lower surface is increased and the influence of wing-tip vortices is decreased. These two significant effects improve the lift-drag ratio. On the other hand, the endplate prevents the high-pressure air escaping from the air cushion at the wing tip and causes to increase the lift and lift-drag ratio further. It is found from the visualization of computation results that two wing-tip vortices are generated from each surface of the wing tip and their strength are weak and diminished rapidly. Irodov-s criteria are also evaluated to investigate the static height stability. The comparison of Irodov-s criteria shows that the endplate improves the deviation of the static height stability with respect to pitch angles and heights. As the results, the endplate can improve the aerodynamic characteristics and static height stability of wings in ground effect, simultaneously.

An Investigation of Adjustment of Solar Shading Devices in Office Buildings

The purpose of this paper is to investigate the adjust- ment of solar shading devices in office buildings in two different seasons by occupants, and its influence on the lighting control and indoor illuminance levels. The results show that occupants take inappropriate measures both in reducing solar radiation in summer and in admitting solar gains in winter, resulting in an increase in lighting energy and a reduction in indoor illuminance. Therefore, movable shading devices, controlled automatically, are suitable for building applications to reduce energy consumption.

Development of a Water-Jet Assisted Underwater Laser Cutting Process

We present the development of a new underwater laser cutting process in which a water-jet has been used along with the laser beam to remove the molten material through kerf. The conventional underwater laser cutting usually utilizes a high pressure gas jet along with laser beam to create a dry condition in the cutting zone and also to eject out the molten material. This causes a lot of gas bubbles and turbulence in water, and produces aerosols and waste gas. This may cause contamination in the surrounding atmosphere while cutting radioactive components like burnt nuclear fuel. The water-jet assisted underwater laser cutting process produces much less turbulence and aerosols in the atmosphere. Some amount of water vapor bubbles is formed at the laser-metal-water interface; however, they tend to condense as they rise up through the surrounding water. We present the design and development of a water-jet assisted underwater laser cutting head and the parametric study of the cutting of AISI 304 stainless steel sheets with a 2 kW CW fiber laser. The cutting performance is similar to that of the gas assist laser cutting; however, the process efficiency is reduced due to heat convection by water-jet and laser beam scattering by vapor. This process may be attractive for underwater cutting of nuclear reactor components.

Contributory Factors to Diabetes Dietary Regimen Non Adherence in Adults with Diabetes

A cross sectional survey design was used to collect data from 370 diabetic patients. Two instruments were used in obtaining data; in-depth interview guide and researchers- developed questionnaire. Fisher's exact test was used to investigate association between the identified factors and nonadherence. Factors identified were: socio-demographic factors such as: gender, age, marital status, educational level and occupation; psychosocial obstacles such as: non-affordability of prescribed diet, frustration due to the restriction, limited spousal support, feelings of deprivation, feeling that temptation is inevitable, difficulty in adhering in social gatherings and difficulty in revealing to host that one is diabetic; health care providers obstacles were: poor attitude of health workers, irregular diabetes education in clinics , limited number of nutrition education sessions/ inability of the patients to estimate the desired quantity of food, no reminder post cards or phone calls about upcoming patient appointments and delayed start of appointment / time wasting in clinics.

Health Monitoring of Power Transformers by Dissolved Gas Analysis using Regression Method and Study the Effect of Filtration on Oil

Economically transformers constitute one of the largest investments in a Power system. For this reason, transformer condition assessment and management is a high priority task. If a transformer fails, it would have a significant negative impact on revenue and service reliability. Monitoring the state of health of power transformers has traditionally been carried out using laboratory Dissolved Gas Analysis (DGA) tests performed at periodic intervals on the oil sample, collected from the transformers. DGA of transformer oil is the single best indicator of a transformer-s overall condition and is a universal practice today, which started somewhere in the 1960s. Failure can occur in a transformer due to different reasons. Some failures can be limited or prevented by maintenance. Oil filtration is one of the methods to remove the dissolve gases and prevent the deterioration of the oil. In this paper we analysis the DGA data by regression method and predict the gas concentration in the oil in the future. We bring about a comparative study of different traditional methods of regression and the errors generated out of their predictions. With the help of these data we can deduce the health of the transformer by finding the type of fault if it has occurred or will occur in future. Additional in this paper effect of filtration on the transformer health is highlight by calculating the probability of failure of a transformer with and without oil filtrating.

Ignition Time Delay in Swirling Supersonic Flow Combustion

Supersonic hydrogen-air cylindrical mixing layer is numerically analyzed to investigate the effect of inlet swirl on ignition time delay in scramjets. Combustion is treated using detail chemical kinetics. One-equation turbulence model of Spalart and Allmaras is chosen to study the problem and advection upstream splitting method is used as computational scheme. The results show that swirling both fuel and oxidizer streams may drastically decrease the ignition distance in supersonic combustion, unlike using the swirl just in fuel stream which has no helpful effect.

Improved Back Propagation Algorithm to Avoid Local Minima in Multiplicative Neuron Model

The back propagation algorithm calculates the weight changes of artificial neural networks, and a common approach is to use a training algorithm consisting of a learning rate and a momentum factor. The major drawbacks of above learning algorithm are the problems of local minima and slow convergence speeds. The addition of an extra term, called a proportional factor reduces the convergence of the back propagation algorithm. We have applied the three term back propagation to multiplicative neural network learning. The algorithm is tested on XOR and parity problem and compared with the standard back propagation training algorithm.

Low-Cost Pre-Treatment of Pharmaceutical Wastewater

Pharmaceutical industries and effluents of sewage treatment plants are the main sources of residual pharmaceuticals in water resources. These emergent pollutants may adversely impact the biophysical environment. Pharmaceutical industries often generate wastewater that changes in characteristics and quantity depending on the used manufacturing processes. Carbamazepine (CBZ), {5Hdibenzo [b,f]azepine-5-carboxamide, (C15H12N2O)}, is a significant non-biodegradable pharmaceutical contaminant in the Jordanian pharmaceutical wastewater, which is not removed by the activated sludge processes in treatment plants. Activated carbon may potentially remove that pollutant from effluents, but the high cost involved suggests that more attention should be given to the potential use of low-cost materials in order to reduce cost and environmental contamination. Powders of Jordanian non-metallic raw materials namely, Azraq Bentonite (AB), Kaolinite (K), and Zeolite (Zeo) were activated (acid and thermal treatment) and evaluated by removing CBZ. The results of batch and column techniques experiments showed around 46% and 67% removal of CBZ respectively.

Correlation of Viscosity in Nanofluids using Genetic Algorithm-neural Network (GA-NN)

An accurate and proficient artificial neural network (ANN) based genetic algorithm (GA) is developed for predicting of nanofluids viscosity. A genetic algorithm (GA) is used to optimize the neural network parameters for minimizing the error between the predictive viscosity and the experimental one. The experimental viscosity in two nanofluids Al2O3-H2O and CuO-H2O from 278.15 to 343.15 K and volume fraction up to 15% were used from literature. The result of this study reveals that GA-NN model is outperform to the conventional neural nets in predicting the viscosity of nanofluids with mean absolute relative error of 1.22% and 1.77% for Al2O3-H2O and CuO-H2O, respectively. Furthermore, the results of this work have also been compared with others models. The findings of this work demonstrate that the GA-NN model is an effective method for prediction viscosity of nanofluids and have better accuracy and simplicity compared with the others models.

Visualising Energy Efficiency Landscape

This paper discusses the landscape design that could increase energy efficiency in a house. By planting trees in a house compound, the tree shades prevent direct sunlight from heating up the building, and it enables cooling off the surrounding air. The requirement for air-conditioning could be minimized and the air quality could be improved. During the life time of a tree, the saving cost from the mentioned benefits could be up to US $ 200 for each tree. The project intends to visually describe the landscape design in a house compound that could enhance energy efficiency and consequently lead to energy saving. The house compound model was developed in three dimensions by using AutoCAD 2005, the animation was programmed by using LightWave 3D softwares i.e. Modeler and Layout to display the tree shadings in the wall. The visualization was executed on a VRML Pad platform and implemented on a web environment.

Seasonal Prevalence of Aedes aegypti and Ae.albopictus in Three Topographical Areas of Southern Thailand

This study investigated the seasonal prevalence of Aedes aegypti and Ae. albopictus larvae in three topographical areas (i.e. mangrove, rice paddy and mountainous areas). Samples were collected from 300 households in both wet and dry seasons in nine districts in Nakhon Si Thammarat province. Ae. aegypti and Ae. albopictus were found in 21 out of 29 types of water containers in mangrove, rice paddy and mountainous areas. Ae. aegypti and Ae. albopictus laid eggs in different container types depending on season and topographical areas. Ae. aegypti larvae were found most in metal box in mangrove and mountainous areas in wet season. Ae. albopictus larvae were also found most in metal box in mangrove and mountainous areas in both wet and dry seasons. All Ae. albopictus larval indices were higher than Ae. aegypti larval indices in all three topographical areas and both seasons. HI and BI did not differ in three topographical areas but differed between Aedes sp. HI for both Ae. aegypti and Ae. albopictus in all three topographical areas in both seasons were greater than 10 %, except Aedes aegypti in rice paddy area in wet season. This indicated high risks of DHF transmission in these areas.

Current Status and Energy Savings Potential of Solar Shading in Ningbo

To investigate the energy performance of solar shading devices, this paper carried out a survey on the current status of solar shading utilization in buildings in Ningbo and performed building simulations to evaluate the energy savings potential by adopting different solar shading devices. Results show that solar shading utilization in this area is not popular and effective, and should be considered firstly in the design stage since the potential for energy savings is up to 6.8% for residential buildings and 9.4% for commercial buildings.

The Sequestration of Heavy Metals Contaminating the Wonderfonteinspruit Catchment Area using Natural Zeolite

For more than 120 years, gold mining formed the backbone the South Africa-s economy. The consequence of mine closure was observed in large-scale land degradation and widespread pollution of surface water and groundwater. This paper investigates the feasibility of using natural zeolite in removing heavy metals contaminating the Wonderfonteinspruit Catchment Area (WCA), a water stream with high levels of heavy metals and radionuclide pollution. Batch experiments were conducted to study the adsorption behavior of natural zeolite with respect to Fe2+, Mn2+, Ni2+, and Zn2+. The data was analysed using the Langmuir and Freudlich isotherms. Langmuir was found to correlate the adsorption of Fe2+, Mn2+, Ni2+, and Zn2+ better, with the adsorption capacity of 11.9 mg/g, 1.2 mg/g, 1.3 mg/g, and 14.7 mg/g, respectively. Two kinetic models namely, pseudo-first order and pseudo second order were also tested to fit the data. Pseudo-second order equation was found to be the best fit for the adsorption of heavy metals by natural zeolite. Zeolite functionalization with humic acid increased its uptake ability.

An Analytical Framework for Multi-Site Supply Chain Planning Problems

As the gradual increase of the enterprise scale, the firms may possess many manufacturing plants located in different places geographically. This change will result in the multi-site production planning problems under the environment of multiple plants or production resources. Our research proposes the structural framework to analyze the multi-site planning problems. The analytical framework is composed of six elements: multi-site conceptual model, product structure (bill of manufacturing), production strategy, manufacturing capability and characteristics, production planning constraints, and key performance indicators. As well as the discussion of these six ingredients, we also review related literatures in this paper to match our analytical framework. Finally we take a real-world practical example of a TFT-LCD manufacturer in Taiwan to explain our proposed analytical framework for the multi-site production planning problems.

Mobile Communications Client Server System for Stock Exchange e-Services Access

Using mobile Internet access technologies and eservices, various economic agents can efficiently offer their products or services to a large number of clients. With the support of mobile communications networks, the clients can have access to e-services, anywhere and anytime. This is a base to establish a convergence of technological and financial interests of mobile operators, software developers, mobile terminals producers and e-content providers. In this paper, a client server system is presented, using 3G, EDGE, mobile terminals, for Stock Exchange e-services access.

Dynamic Modeling of Intelligent Air-Cushion Tracked Vehicle for Swamp Peat

Modeling of the dynamic behavior and motion are renewed interest in the improved tractive performance of an intelligent air-cushion tracked vehicle (IACTV). This paper presents a new dynamical model for the forces on the developed small scale intelligent air-cushion tracked vehicle moving over swamp peat. The air cushion system partially supports the 25 % of vehicle total weight in order to make the vehicle ground contact pressure 7 kN/m2. As the air-cushion support system can adjust automatically on the terrain, so the vehicle can move over the terrain without any risks. The springdamper system is used with the vehicle body to control the aircushion support system on any undulating terrain by making the system sinusoidal form. Experiments have been carried out to investigate the relationships among tractive efficiency, slippage, traction coefficient, load distribution ratio, tractive effort, motion resistance and power consumption in given terrain conditions. Experiment and simulation results show that air-cushion system improves the vehicle performance by keeping traction coefficient of 71% and tractive efficiency of 62% and the developed model can meet the demand of transport efficiency with the optimal power consumption.

Investigation of Regenerative and Recuperative Burners for Different Sizes of Reheating Furnaces

This research aims to analyze the regenerative burner and the recuperative burner for the different reheating furnaces in the steel industry. The warm air temperatures of the burners are determined to suit with the sizes of the reheating furnaces by considering the air temperature, the fuel cost and the investment cost. The calculations of the payback period and the net present value are studied to compare the burners for the different reheating furnaces. The energy balance is utilized to calculate and compare the energy used in the different sizes of reheating furnaces for each burner. It is found that the warm air temperature is different if the sizes of reheating furnaces are varied. Based on the considerations of the net present value and the payback period, the regenerative burner is suitable for all plants at the same life of the burner. Finally, the sensitivity analysis of all factors has been discussed in this research.

Partial Stabilization of a Class of Nonlinear Systems Via Center Manifold Theory

This paper addresses the problem of the partial state feedback stabilization of a class of nonlinear systems. In order to stabilization this class systems, the especial place of this paper is to reverse designing the state feedback control law from the method of judging system stability with the center manifold theory. First of all, the center manifold theory is applied to discuss the stabilization sufficient condition and design the stabilizing state control laws for a class of nonlinear. Secondly, the problem of partial stabilization for a class of plane nonlinear system is discuss using the lyapunov second method and the center manifold theory. Thirdly, we investigate specially the problem of the stabilization for a class of homogenous plane nonlinear systems, a class of nonlinear with dual-zero eigenvalues and a class of nonlinear with zero-center using the method of lyapunov function with homogenous derivative, specifically. At the end of this paper, some examples and simulation results are given show that the approach of this paper to this class of nonlinear system is effective and convenient.

Study on Damage Tolerance Behavior of Integrally Stiffened Panel and Conventional Stiffened Panel

The damage tolerance behavior of integrally and conventional stiffened panel is investigated based on the fracture mechanics and finite element analysis. The load bearing capability and crack growth characteristic of both types of the stiffened panels having same configuration subjected to distributed tensile load is examined in this paper. A fourteen-stringer stiffened panel is analyzed for a central skin crack propagating towards the adjacent stringers. Stress intensity factors and fatigue crack propagation rates of both types of the stiffened panels are then compared. The analysis results show that integral stiffening causes higher stress intensity factor than conventional stiffened panel as the crack tip passes through the stringer and the integrally stiffened panel has less load bearing capability than the riveted stiffened panel.

Effect of Organic Matter and Biofertilizers on Chickpea Quality and Biological Nitrogen Fixation

In order to evaluation the effects of soil organic matter and biofertilizer on chickpea quality and biological nitrogen fixation, field experiments were carried out in 2007 and 2008 growing seasons. In this research the effects of different strategies for soil fertilization were investigated on grain yield and yield component, minerals, organic compounds and cooking time of chickpea. Experimental units were arranged in split-split plots based on randomized complete blocks with three replications. Main plots consisted of (G1): establishing a mixed vegetation of Vicia panunica and Hordeum vulgare and (G2): control, as green manure levels. Also, five strategies for obtaining the base fertilizer requirement including (N1): 20 t.ha-1 farmyard manure; (N2): 10 t.ha-1 compost; (N3): 75 kg.ha-1 triple super phosphate; (N4): 10 t.ha-1 farmyard manure + 5 t.ha-1 compost and (N5): 10 t.ha-1 farmyard manure + 5 t.ha-1 compost + 50 kg.ha-1 triple super phosphate were considered in sub plots. Furthermoree four levels of biofertilizers consisted of (B1): Bacillus lentus + Pseudomonas putida; (B2): Trichoderma harzianum; (B3): Bacillus lentus + Pseudomonas putida + Trichoderma harzianum; and (B4): control (without biofertilizers) were arranged in sub-sub plots. Results showed that integrating biofertilizers (B3) and green manure (G1) produced the highest grain yield. The highest amounts of yield were obtained in G1×N5 interaction. Comparison of all 2-way and 3-way interactions showed that G1N5B3 was determined as the superior treatment. Significant increasing of N, P2O5, K2O, Fe and Mg content in leaves and grains emphasized on superiority of mentioned treatment because each one of these nutrients has an approved role in chlorophyll synthesis and photosynthesis abilities of the crops. The combined application of compost, farmyard manure and chemical phosphorus (N5) in addition to having the highest yield, had the best grain quality due to high protein, starch and total sugar contents, low crude fiber and reduced cooking time.