Effect of Moisture Content and Loading Rate on Mechanical Strength of Brown Rice Varieties

The effect of moisture content and loading rate on mechanical strength of 12 brown rice grain varieties was determined. The results showed that the rupture force of brown rice grain decreased by increasing the moisture content and loading rate. The highest rupture force values was obtained at the moisture content of 8% (w.b.) and loading rate of 10 mm/min; while the lowest rupture force corresponded to the moisture content of 14% (w.b.) and loading rate of 15 mm/min. The 12 varieties were divided into three groups, namely local short grain varieties, local long grain varieties and improved long grain varieties. It was observed that the rupture strength of the three groups were statistically different from each other (P

Knowledge Sharing: A Survey, Assessment and Directions for Future Research: Individual Behavior Perspective

One of the most important areas of knowledge management studies is knowledge sharing. Measured in terms of number of scientific articles and organization-s applications, knowledge sharing stands as an example of success in the field. This paper reviews the related papers in the context of the underlying individual behavioral variables to providea direction framework for future research and writing.

Evolved Disease Avoidance Mechanisms, Generalized Prejudice, Modern Attitudes towards Individuals with Intellectual Disability

Previous research has demonstrated that negative attitudes towards people with physical disabilities and obesity are predicted by a component of perceived vulnerability to disease; germ aversion. These findings have been suggested as illustrations of an evolved but over-active mechanism which promotes the avoidance of pathogen-carrying individuals. To date, this interpretation of attitude formation has not been explored with regard to people with intellectual disability, and no attempts have been made to examine possible mediating factors. This study examined attitudes in 333 adults and demonstrated that the moderate positive relationship between germ aversion and negative attitudes toward people with intellectual disability is fully mediated by social dominance orientation, a general preference for hierarchies and inequalities among social groups. These findings have implications for the design of programs which attempt to promote community acceptance and inclusion of people with disabilities.

Learning Human-Like Color Categorization through Interaction

Human perceives color in categories, which may be identified using color name such as red, blue, etc. The categorization is unique for each human being. However despite the individual differences, the categorization is shared among members in society. This allows communication among them, especially when using color name. Sociable robot, to live coexist with human and become part of human society, must also have the shared color categorization, which can be achieved through learning. Many works have been done to enable computer, as brain of robot, to learn color categorization. Most of them rely on modeling of human color perception and mathematical complexities. Differently, in this work, the computer learns color categorization through interaction with humans. This work aims at developing the innate ability of the computer to learn the human-like color categorization. It focuses on the representation of color categorization and how it is built and developed without much mathematical complexity.

Compact Model of Dual-Drain MAGFETs Simulation

This work offers a study of new simple compact model of dual-drain Magnetic Field Effect Transistor (MAGFET) including geometrical effects and biasing dependency. An explanation of the sensitivity is investigated, involving carrier deflection as the dominant operating principle. Finally, model verification with simulation results is introduced to ensure that acceptable error of 2% is achieved.

Finite Element Simulation of Multi-Stage Deep Drawing Processes and Comparison with Experimental Results

The plastic forming process of sheet plate takes an important place in forming metals. The traditional techniques of tool design for sheet forming operations used in industry are experimental and expensive methods. Prediction of the forming results, determination of the punching force, blank holder forces and the thickness distribution of the sheet metal will decrease the production cost and time of the material to be formed. In this paper, multi-stage deep drawing simulation of an Industrial Part has been presented with finite element method. The entire production steps with additional operations such as intermediate annealing and springback has been simulated by ABAQUS software under axisymmetric conditions. The simulation results such as sheet thickness distribution, Punch force and residual stresses have been extracted in any stages and sheet thickness distribution was compared with experimental results. It was found through comparison of results, the FE model have proven to be in close agreement with those of experiment.

An Efficient Biometric Cryptosystem using Autocorrelators

Cryptography provides the secure manner of information transmission over the insecure channel. It authenticates messages based on the key but not on the user. It requires a lengthy key to encrypt and decrypt the sending and receiving the messages, respectively. But these keys can be guessed or cracked. Moreover, Maintaining and sharing lengthy, random keys in enciphering and deciphering process is the critical problem in the cryptography system. A new approach is described for generating a crypto key, which is acquired from a person-s iris pattern. In the biometric field, template created by the biometric algorithm can only be authenticated with the same person. Among the biometric templates, iris features can efficiently be distinguished with individuals and produces less false positives in the larger population. This type of iris code distribution provides merely less intra-class variability that aids the cryptosystem to confidently decrypt messages with an exact matching of iris pattern. In this proposed approach, the iris features are extracted using multi resolution wavelets. It produces 135-bit iris codes from each subject and is used for encrypting/decrypting the messages. The autocorrelators are used to recall original messages from the partially corrupted data produced by the decryption process. It intends to resolve the repudiation and key management problems. Results were analyzed in both conventional iris cryptography system (CIC) and non-repudiation iris cryptography system (NRIC). It shows that this new approach provides considerably high authentication in enciphering and deciphering processes.

Numerical Investigation on Damage Evolution of Piles inside Liquefied Soil Foundation - Dynamic-Loading Experiments -

The large and small-scale shaking table tests, which was conducted for investigating damage evolution of piles inside liquefied soil, are numerically simulated and experimental verified by the3D nonlinear finite element analysis. Damage evolution of elasto-plastic circular steel piles and reinforced concrete (RC) one with cracking and yield of reinforcement are focused on, and the failure patterns and residual damages are captured by the proposed constitutive models. The superstructure excitation behind quay wall is reproduced as well.

A Dynamic Decision Model for Vertical Handoffs across Heterogeneous Wireless Networks

The convergence of heterogeneous wireless access technologies characterizes the 4G wireless networks. In such converged systems, the seamless and efficient handoff between different access technologies (vertical handoff) is essential and remains a challenging problem. The heterogeneous co-existence of access technologies with largely different characteristics creates a decision problem of determining the “best" available network at “best" time to reduce the unnecessary handoffs. This paper proposes a dynamic decision model to decide the “best" network at “best" time moment to handoffs. The proposed dynamic decision model make the right vertical handoff decisions by determining the “best" network at “best" time among available networks based on, dynamic factors such as “Received Signal Strength(RSS)" of network and “velocity" of mobile station simultaneously with static factors like Usage Expense, Link capacity(offered bandwidth) and power consumption. This model not only meets the individual user needs but also improve the whole system performance by reducing the unnecessary handoffs.

Density of Hydrocarbonoclastic Bacteria and Polycyclic Aromatic Hydrocarbon Accumulation in Iko River Mangrove Ecosystem, Nigeria

Sediment and mangrove root samples from Iko River Estuary, Nigeria were analyzed for microbial and polycyclic aromatic hydrocarbon (PAH) content. The total heterotrophic bacterial (THB) count ranged from 1.1x107 to 5.1 x107 cfu/g, total fungal (TF) count ranged from 1.0x106 to 2.7x106 cfu/g, total coliform (TC) count ranged from 2.0x104 to 8.0x104cfu/g while hydrocarbon utilizing bacterial (HUB) count ranged from 1.0x 105 to 5.0 x 105cfu/g. There was a range of positive correlation (r = 0.72 to 0.93) between THB count and total HUB count, respectively. The organisms were Staphylococcus aureus, Bacillus cereus, Flavobacterium breve, Pseudomonas aeruginosa, Erwinia amylovora, Escherichia coli, Enterobacter sp, Desulfovibrio sp, Acinetobacter iwoffii, Chromobacterium violaceum, Micrococcus sedentarius, Corynebacterium sp, and Pseudomonas putrefaciens. The PAH were Naphthalene, 2-Methylnaphthalene, Acenapthylene, Acenaphthene, Fluorene, Phenanthene, Anthracene, Fluoranthene, Pyrene, Benzo(a)anthracene, Chrysene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Dibenzo(a,h)anthracene, Benzo(g,h,l)perylene ,Indeno(1,2,3-d)pyrene with individual PAH concentrations that ranged from 0.20mg/kg to 1.02mg/kg, 0.20mg/kg to 1.07mg/kg and 0.2mg/kg to 4.43mg/kg in the benthic sediment, epipellic sediment and mangrove roots, respectively. Total PAH ranged from 6.30 to 9.93mg/kg, 6.30 to 9.13mg/kg and 9.66 to 16.68mg/kg in the benthic sediment, epipellic sediment and mangrove roots, respectively. The high concentrations in the mangrove roots are indicative of bioaccumulation of the pollutant in the plant tissue. The microorganisms are of ecological significance and the detectable quantities of polycyclic aromatic hydrocarbon could be partitioned and accumulated in tissues of infaunal and epifaunal organisms in the study area.

Chronic Consumer States Influencing Compulsive Consumption

Consumer behaviour analysis represents an important field of study in marketing. Particularly strategy development for marketing and communications will be more focused and effective when marketers have an understanding of the motivations, behaviour and psychology of consumers. While materialism has been found to be one of the important elements in consumer behaviour, compulsive consumption represents another aspect that has recently attracted more attention. This is because of the growing prevalence of dysfunctional buying that has raised concern in consumer societies. Present studies and analyses on origins and motivations of compulsive buying have mainly focused on either individual factors or groups of related factors and hence a need for a holistic view exists. This paper provides a comprehensive perspective on compulsive consumption and establishes relevant propositions keeping the family life cycle stages as a reference for the incidence of chronic consumer states and their influence on compulsive consumption.

A Neural Model of Object Naming

One astonishing capability of humans is to recognize thousands of different objects visually, and to learn the semantic association between those objects and words referring to them. This work is an attempt to build a computational model of such capacity,simulating the process by which infants learn how to recognize objects and words through exposure to visual stimuli and vocal sounds.One of the main fact shaping the brain of a newborn is that lights and colors come from entities of the world. Gradually the visual system learn which light sensations belong to same entities, despite large changes in appearance. This experience is common between humans and several other mammals, like non-human primates. But humans only can recognize a huge variety of objects, most manufactured by himself, and make use of sounds to identify and categorize them. The aim of this model is to reproduce these processes in a biologically plausible way, by reconstructing the essential hierarchy of cortical circuits on the visual and auditory neural paths.

Spam E-mail: How Malaysian E-mail Users Deal with It?

This paper attempts to discuss the spam issue from the Malaysian e-mail users- perspective. The purpose is to discover how Malaysian users handle the spam e-mail problem. From the experiences we hope to discover the necessary effort needed to be undertaken to face this problem in the context of Malaysia. A survey was conducted to understand how Malaysian individual perceived spam and what they actually do with the spam e-mail they received in their daily life. The findings indicate that the level of awareness on spam issue in action is still low and need some extra effort by government and relevant agencies to increase their level of awareness.

Strength Characteristics of Shallow Gassy Sand in the Hangzhou Bay

In view of geological origin, formation of the shallow gas reservoir of the Hangzhou Bay, northern Zhejiang Province, eastern China, and original occurrence characteristics of the gassy sand are analyzed. Generally, gassy sand in scale gas reservoirs is in the state of residual moisture content and the approximate scope of initial matric suction of sand ranges about from 0kPa to100kPa. Results based on GDS triaxial tests show that the classical shear strength formulas of unsaturated soil can not effectively describe basic strength characteristics of gassy sand; the relationship between apparent cohesion and matric suction of gassy sand agrees well with the power function, which can reasonably be used to describe the strength of gassy sand. In the stress path of gas release, shear strength of gassy sand will increase and experimental results show the formula proposed in this paper can effectively predict the strength increment. When saturated strength indexes of the sand are used in engineering design, moderate reduction should be considered.

A New Routing Algorithm: MIRAD

LSP routing is among the prominent issues in MPLS networks traffic engineering. The objective of this routing is to increase number of the accepted requests while guaranteeing the quality of service (QoS). Requested bandwidth is the most important QoS criterion that is considered in literatures, and a various number of heuristic algorithms have been presented with that regards. Many of these algorithms prevent flows through bottlenecks of the network in order to perform load balancing, which impedes optimum operation of the network. Here, a modern routing algorithm is proposed as MIRAD: having a little information of the network topology, links residual bandwidth, and any knowledge of the prospective requests it provides every request with a maximum bandwidth as well as minimum end-to-end delay via uniform load distribution across the network. Simulation results of the proposed algorithm show a better efficiency in comparison with similar algorithms.

An Advanced Approach Based on Artificial Neural Networks to Identify Environmental Bacteria

Environmental micro-organisms include a large number of taxa and some species that are generally considered nonpathogenic, but can represent a risk in certain conditions, especially for elderly people and immunocompromised individuals. Chemotaxonomic identification techniques are powerful tools for environmental micro-organisms, and cellular fatty acid methyl esters (FAME) content is a powerful fingerprinting identification technique. A system based on an unsupervised artificial neural network (ANN) was set up using the fatty acid profiles of standard bacterial strains, obtained by gas-chromatography, used as learning data. We analysed 45 certified strains belonging to Acinetobacter, Aeromonas, Alcaligenes, Aquaspirillum, Arthrobacter, Bacillus, Brevundimonas, Enterobacter, Flavobacterium, Micrococcus, Pseudomonas, Serratia, Shewanella and Vibrio genera. A set of 79 bacteria isolated from a drinking water line (AMGA, the major water supply system in Genoa) were used as an example for identification compared to standard MIDI method. The resulting ANN output map was found to be a very powerful tool to identify these fresh isolates.

Intelligent Modeling of the Electrical Activity of the Human Heart

The aim of this contribution is to present a new approach in modeling the electrical activity of the human heart. A recurrent artificial neural network is being used in order to exhibit a subset of the dynamics of the electrical behavior of the human heart. The proposed model can also be used, when integrated, as a diagnostic tool of the human heart system. What makes this approach unique is the fact that every model is being developed from physiological measurements of an individual. This kind of approach is very difficult to apply successfully in many modeling problems, because of the complexity and entropy of the free variables describing the complex system. Differences between the modeled variables and the variables of an individual, measured at specific moments, can be used for diagnostic purposes. The sensor fusion used in order to optimize the utilization of biomedical sensors is another point that this paper focuses on. Sensor fusion has been known for its advantages in applications such as control and diagnostics of mechanical and chemical processes.

Optimal Design of Airfoil with High Aspect Ratio in Unmanned Aerial Vehicles

Shape optimization of the airfoil with high aspect ratio of long endurance unmanned aerial vehicle (UAV) is performed by the multi-objective optimization technology coupled with computational fluid dynamics (CFD). For predicting the aerodynamic characteristics around the airfoil the high-fidelity Navier-Stokes solver is employed and SMOGA (Simple Multi-Objective Genetic Algorithm), which is developed by authors, is used for solving the multi-objective optimization problem. To obtain the optimal solutions of the design variable (i.e., sectional airfoil profile, wing taper ratio and sweep) for high performance of UAVs, both the lift and lift-to-drag ratio are maximized whereas the pitching moment should be minimized, simultaneously. It is found that the lift force and lift-to-drag ratio are linearly dependent and a unique and dominant solution are existed. However, a trade-off phenomenon is observed between the lift-to-drag ratio and pitching moment. As the result of optimization, sixty-five (65) non-dominated Pareto individuals at the cutting edge of design spaces that is decided by airfoil shapes can be obtained.

Working Motivation Factors Affecting Job Performance Effectiveness

The purpose of this paper was to study motivation factors affecting job performance effectiveness. This paper drew upon data collected from an Internal Audit Staffs of Internal Audit Line of Head Office of Krung Thai Public Company Limited. Statistics used included frequency, percentage, mean and standard deviation, t-test, and one-way ANOVA test. The finding revealed that the majority of the respondents were female of 46 years of age and over, married and live together, hold a bachelor degree, with an average monthly income over 70,001 Baht. The majority of respondents had over 15 years of work experience. They generally had high working motivation as well as high job performance effectiveness. The hypotheses testing disclosed that employees with different working status had different level of job performance effectiveness at a 0.01 level of significance. Working motivation factors had an effect on job performance in the same direction with high level. Individual working motivation included working completion, reorganization, working progression, working characteristic, opportunity, responsibility, management policy, supervision, relationship with their superior, relationship with co-worker, working position, working stability, safety, privacy, working conditions, and payment. All of these factors related to job performance effectiveness in the same direction with medium level.

Next Generation Networks and Their Relation with Ad-hoc Networks

The communication networks development and advancement during two last decades has been toward a single goal and that is gradual change from circuit-switched networks to packed switched ones. Today a lot of networks operates are trying to transform the public telephone networks to multipurpose packed switch. This new achievement is generally called "next generation networks". In fact, the next generation networks enable the operators to transfer every kind of services (sound, data and video) on a network. First, in this report the definition, characteristics and next generation networks services and then ad-hoc networks role in the next generation networks are studied.