Handwritten Character Recognition Using Multiscale Neural Network Training Technique

Advancement in Artificial Intelligence has lead to the developments of various “smart" devices. Character recognition device is one of such smart devices that acquire partial human intelligence with the ability to capture and recognize various characters in different languages. Firstly multiscale neural training with modifications in the input training vectors is adopted in this paper to acquire its advantage in training higher resolution character images. Secondly selective thresholding using minimum distance technique is proposed to be used to increase the level of accuracy of character recognition. A simulator program (a GUI) is designed in such a way that the characters can be located on any spot on the blank paper in which the characters are written. The results show that such methods with moderate level of training epochs can produce accuracies of at least 85% and more for handwritten upper case English characters and numerals.

The Functionality and Usage of CRM Systems

Modern information and communication technologies offer a variety of support options for the efficient handling of customer relationships. CRM systems have been developed, which are designed to support the processes in the areas of marketing, sales and service. Along with technological progress, CRM systems are constantly changing, i.e. the systems are continually enhanced by new functions. However, not all functions are suitable for every company because of different frameworks and business processes. In this context the question arises whether or not CRM systems are widely used in Austrian companies and which business processes are most frequently supported by CRM systems. This paper aims to shed light on the popularity of CRM systems in Austrian companies in general and the use of different functions to support their daily business. First of all, the paper provides a theoretical overview of the structure of modern CRM systems and proposes a categorization of currently available software functionality for collaborative, operational and analytical CRM processes, which provides the theoretical background for the empirical study. Apart from these theoretical considerations, the paper presents the empirical results of a field survey on the use of CRM systems in Austrian companies and analyzes its findings.

MAP-Based Image Super-resolution Reconstruction

From a set of shifted, blurred, and decimated image , super-resolution image reconstruction can get a high-resolution image. So it has become an active research branch in the field of image restoration. In general, super-resolution image restoration is an ill-posed problem. Prior knowledge about the image can be combined to make the problem well-posed, which contributes to some regularization methods. In the regularization methods at present, however, regularization parameter was selected by experience in some cases and other techniques have too heavy computation cost for computing the parameter. In this paper, we construct a new super-resolution algorithm by transforming the solving of the System stem Є=An into the solving of the equations X+A*X-1A=I , and propose an inverse iterative method.

Simulation and Design of Single Fed Circularly Polarized Triangular Microstrip Antenna with Wide Band Tuning Stub

Recently, several designs of single fed circularly polarized microstrip antennas have been studied. Relatively, a few designs for achieving circular polarization using triangular microstrip antenna are available. Typically existing design of single fed circularly polarized triangular microstrip antennas include the use of equilateral triangular patch with a slit or a horizontal slot on the patch or addition a narrow band stub on the edge or a vertex of triangular patch. In other word, with using a narrow band tune stub on middle of an edge of triangle causes of facility to compensate the possible fabrication error and substrate materials with easier adjusting the tuner stub length. Even though disadvantages of this method is very long of stub (approximate 1/3 length of triangle edge). In this paper, instead of narrow band stub, a wide band stub has been applied, therefore the length of stub by this method has been decreased around 1/10 edge of triangle in addition changing the aperture angle of stub, provides more facility for designing and producing circular polarization wave.

Fairness and Quality of Service Issues and Analysis of IEEE 802.11e Wireless LAN

The IEEE 802.11e which is an enhanced version of the 802.11 WLAN standards incorporates the Quality of Service (QoS) which makes it a better choice for multimedia and real time applications. In this paper we study various aspects concerned with 802.11e standard. Further, the analysis results for this standard are compared with the legacy 802.11 standard. Simulation results show that IEEE 802.11e out performs legacy IEEE 802.11 in terms of quality of service due to its flow differentiated channel allocation and better queue management architecture. We also propose a method to improve the unfair allocation of bandwidth for downlink and uplink channels by varying the medium access priority level.

An Enhanced Cryptanalytic Attack on Knapsack Cipher using Genetic Algorithm

With the exponential growth of networked system and application such as eCommerce, the demand for effective internet security is increasing. Cryptology is the science and study of systems for secret communication. It consists of two complementary fields of study: cryptography and cryptanalysis. The application of genetic algorithms in the cryptanalysis of knapsack ciphers is suggested by Spillman [7]. In order to improve the efficiency of genetic algorithm attack on knapsack cipher, the previously published attack was enhanced and re-implemented with variation of initial assumptions and results are compared with Spillman results. The experimental result of research indicates that the efficiency of genetic algorithm attack on knapsack cipher can be improved with variation of initial assumption.

The Advent of Electronic Logbook Technology - Reducing Cost and Risk to Both Marine Resources and the Fishing Industry

Fisheries management all around the world is hampered by the lack, or poor quality, of critical data on fish resources and fishing operations. The main reasons for the chronic inability to collect good quality data during fishing operations is the culture of secrecy common among fishers and the lack of modern data gathering technology onboard most fishing vessels. In response, OLRAC-SPS, a South African company, developed fisheries datalogging software (eLog in short) and named it Olrac. The Olrac eLog solution is capable of collecting, analysing, plotting, mapping, reporting, tracing and transmitting all data related to fishing operations. Olrac can be used by skippers, fleet/company managers, offshore mariculture farmers, scientists, observers, compliance inspectors and fisheries management authorities. The authors believe that using eLog onboard fishing vessels has the potential to revolutionise the entire process of data collection and reporting during fishing operations and, if properly deployed and utilised, could transform the entire commercial fleet to a provider of good quality data and forever change the way fish resources are managed. In addition it will make it possible to trace catches back to the actual individual fishing operation, to improve fishing efficiency and to dramatically improve control of fishing operations and enforcement of fishing regulations.

Investigation of Time Delay Factors in Global Software Development

Global Software Development (GSD) projects are passing through different boundaries of a company, country and even in other continents where time zone differs between both sites. Beside many benefits of such development, research declared plenty of negative impacts on these GSD projects. It is important to understand problems which may lie during the execution of GSD project with different time zones. This research project discussed and provided different issues related to time delays in GSD projects. In this paper, authors investigated some of the time delay factors which usually lie in GSD projects with different time zones. This investigation is done through systematic review of literature. Furthermore, the practices to overcome these delay factors which have already been reported in literature and GSD organizations are also explored through literature survey and case studies.

Theoretical Considerations for Software Component Metrics

We have defined two suites of metrics, which cover static and dynamic aspects of component assembly. The static metrics measure complexity and criticality of component assembly, wherein complexity is measured using Component Packing Density and Component Interaction Density metrics. Further, four criticality conditions namely, Link, Bridge, Inheritance and Size criticalities have been identified and quantified. The complexity and criticality metrics are combined to form a Triangular Metric, which can be used to classify the type and nature of applications. Dynamic metrics are collected during the runtime of a complete application. Dynamic metrics are useful to identify super-component and to evaluate the degree of utilisation of various components. In this paper both static and dynamic metrics are evaluated using Weyuker-s set of properties. The result shows that the metrics provide a valid means to measure issues in component assembly. We relate our metrics suite with McCall-s Quality Model and illustrate their impact on product quality and to the management of component-based product development.

Contextual Factors in the Decision Making of Industrialized Building System Technology

Currently, the Malaysian construction industry is focusing on transforming construction processes from conventional building methods to the Industrialized Building System (IBS). Still, research on the decision making of IBS technology adoption with the influence of contextual factors is scarce. The purpose of this paper is to explore how contextual factors influence the IBS decision making in building projects which is perceived by those involved in construction industry namely construction stakeholders and IBS supply chain members. Theoretical background, theoretical frameworks and literatures which identify possible contextual factors that influence decision making towards IBS technology adoption are presented. This paper also discusses the importance of contextual factors in IBS decision making, highlighting some possible crossover benefits and making some suggestions as to how these can be utilized. Conclusions are drawn and recommendations are made with respect to the perception of socio-economic, IBS policy and IBS technology associated with building projects.

Linux based Embedded Node for Capturing, Compression and Streaming of Digital Audio and Video

A prototype for audio and video capture and compression in real time on a Linux platform has been developed. It is able to visualize both the captured and the compressed video at the same time, as well as the captured and compressed audio with the goal of comparing their quality. As it is based on free code, the final goal is to run it in an embedded system running Linux. Therefore, we would implement a node to capture and compress such multimedia information. Thus, it would be possible to consider the project within a larger one aimed at live broadcast of audio and video using a streaming server which would communicate with our node. Then, we would have a very powerful and flexible system with several practical applications.

Performance Evaluation of an Amperometric Biosensor using a Simple Microcontroller based Data Acquisition System

In this paper we have proposed a methodology to develop an amperometric biosensor for the analysis of glucose concentration using a simple microcontroller based data acquisition system. The work involves the development of Detachable Membrane Unit (enzyme based biomembrane) with immobilized glucose oxidase on the membrane and interfacing the same to the signal conditioning system. The current generated by the biosensor for different glucose concentrations was signal conditioned, then acquired and computed by a simple AT89C51-microcontroller. The optimum operating parameters for the better performance were found and reported. The detailed performance evaluation of the biosensor has been carried out. The proposed microcontroller based biosensor system has the sensitivity of 0.04V/g/dl, with a resolution of 50mg/dl. It has exhibited very good inter day stability observed up to 30 days. Comparing to the reference method such as HPLC, the accuracy of the proposed biosensor system is well within ± 1.5%. The system can be used for real time analysis of glucose concentration in the field such as, food and fermentation and clinical (In-Vitro) applications.

Analytical and Numerical Approaches in Coagulation of Particles

In this paper we discuss the effect of unbounded particle interaction operator on particle growth and we study how this can address the choice of appropriate time steps of the numerical simulation. We provide also rigorous mathematical proofs showing that large particles become dominating with increasing time while small particles contribute negligibly. Second, we discuss the efficiency of the algorithm by performing numerical simulations tests and by comparing the simulated solutions with some known analytic solutions to the Smoluchowski equation.

An Advanced Time-Frequency Domain Method for PD Extraction with Non-Intrusive Measurement

Partial discharge (PD) detection is an important method to evaluate the insulation condition of metal-clad apparatus. Non-intrusive sensors which are easy to install and have no interruptions on operation are preferred in onsite PD detection. However, it often lacks of accuracy due to the interferences in PD signals. In this paper a novel PD extraction method that uses frequency analysis and entropy based time-frequency (TF) analysis is introduced. The repetitive pulses from convertor are first removed via frequency analysis. Then, the relative entropy and relative peak-frequency of each pulse (i.e. time-indexed vector TF spectrum) are calculated and all pulses with similar parameters are grouped. According to the characteristics of non-intrusive sensor and the frequency distribution of PDs, the pulses of PD and interferences are separated. Finally the PD signal and interferences are recovered via inverse TF transform. The de-noised result of noisy PD data demonstrates that the combination of frequency and time-frequency techniques can discriminate PDs from interferences with various frequency distributions.

An Efficient and Optimized Multi Constrained Path Computation for Real Time Interactive Applications in Packet Switched Networks

Quality of Service (QoS) Routing aims to find path between source and destination satisfying the QoS requirements which efficiently using the network resources and underlying routing algorithm and to fmd low-cost paths that satisfy given QoS constraints. One of the key issues in providing end-to-end QoS guarantees in packet networks is determining feasible path that satisfies a number of QoS constraints. We present a Optimized Multi- Constrained Routing (OMCR) algorithm for the computation of constrained paths for QoS routing in computer networks. OMCR applies distance vector to construct a shortest path for each destination with reference to a given optimization metric, from which a set of feasible paths are derived at each node. OMCR is able to fmd feasible paths as well as optimize the utilization of network resources. OMCR operates with the hop-by-hop, connectionless routing model in IP Internet and does not create any loops while fmding the feasible paths. Nodes running OMCR not necessarily maintaining global view of network state such as topology, resource information and routing updates are sent only to neighboring nodes whereas its counterpart link-state routing method depend on complete network state for constrained path computation and that incurs excessive communication overhead.

Comparison between Higher-Order SVD and Third-order Orthogonal Tensor Product Expansion

In digital signal processing it is important to approximate multi-dimensional data by the method called rank reduction, in which we reduce the rank of multi-dimensional data from higher to lower. For 2-dimennsional data, singular value decomposition (SVD) is one of the most known rank reduction techniques. Additional, outer product expansion expanded from SVD was proposed and implemented for multi-dimensional data, which has been widely applied to image processing and pattern recognition. However, the multi-dimensional outer product expansion has behavior of great computation complex and has not orthogonally between the expansion terms. Therefore we have proposed an alterative method, Third-order Orthogonal Tensor Product Expansion short for 3-OTPE. 3-OTPE uses the power method instead of nonlinear optimization method for decreasing at computing time. At the same time the group of B. D. Lathauwer proposed Higher-Order SVD (HOSVD) that is also developed with SVD extensions for multi-dimensional data. 3-OTPE and HOSVD are similarly on the rank reduction of multi-dimensional data. Using these two methods we can obtain computation results respectively, some ones are the same while some ones are slight different. In this paper, we compare 3-OTPE to HOSVD in accuracy of calculation and computing time of resolution, and clarify the difference between these two methods.

Connectionist Approach to Generic Text Summarization

As the enormous amount of on-line text grows on the World-Wide Web, the development of methods for automatically summarizing this text becomes more important. The primary goal of this research is to create an efficient tool that is able to summarize large documents automatically. We propose an Evolving connectionist System that is adaptive, incremental learning and knowledge representation system that evolves its structure and functionality. In this paper, we propose a novel approach for Part of Speech disambiguation using a recurrent neural network, a paradigm capable of dealing with sequential data. We observed that connectionist approach to text summarization has a natural way of learning grammatical structures through experience. Experimental results show that our approach achieves acceptable performance.

GPT Onto: A New Beginning for Malaysia Gross Pollutant Trap Ontology

Ontology is widely being used as a tool for organizing information, creating the relation between the subjects within the defined knowledge domain area. Various fields such as Civil, Biology, and Management have successful integrated ontology in decision support systems for managing domain knowledge and to assist their decision makers. Gross pollutant traps (GPT) are devices used in trapping and preventing large items or hazardous particles in polluting and entering our waterways. However choosing and determining GPT is a challenge in Malaysia as there are inadequate GPT data repositories being captured and shared. Hence ontology is needed to capture, organize and represent this knowledge into meaningful information which can be contributed to the efficiency of GPT selection in Malaysia urbanization. A GPT Ontology framework is therefore built as the first step to capture GPT knowledge which will then be integrated into the decision support system. This paper will provide several examples of the GPT ontology, and explain how it is constructed by using the Protégé tool.

The Effect of Stress Biaxiality on Crack Shape Development

The development of shape and size of a crack in a pressure vessel under uniaxial and biaxial loadings is important in fitness-for-service evaluations such as leak-before-break. In this work finite element modelling was used to evaluate the mean stress and the J-integral around a front of a surface-breaking crack. A procedure on the basis of ductile tearing resistance curves of high and low constrained fracture mechanics geometries was developed to estimate the amount of ductile crack extension for surface-breaking cracks and to show the evolution of the initial crack shape. The results showed non-uniform constraint levels and crack driving forces around the crack front at large deformation levels. It was also shown that initially semi-elliptical surface cracks under biaxial load developed higher constraint levels around the crack front than in uniaxial tension. However similar crack shapes were observed with more extensions associated with cracks under biaxial loading.

Plug and Play Interferometer Configuration using Single Modulator Technique

We demonstrate single-photon interference over 10 km using a plug and play system for quantum key distribution. The quality of the interferometer is measured by using the interferometer visibility. The coding of the signal is based on the phase coding and the value of visibility is based on the interference effect, which result a number of count. The setup gives full control of polarization inside the interferometer. The quality measurement of the interferometer is based on number of count per second and the system produces 94 % visibility in one of the detectors.