Cold Hardiness in Near Isogenic Lines of Bread Wheat (Triticum Aestivum L. em. Thell.)

Low temperature (LT) is one of the most abiotic stresses causing loss of yield in wheat (T. aestivum). Four major genes in wheat (Triticum aestivum L.) with the dominant alleles designated Vrn–A1,Vrn–B1,Vrn–D1 and Vrn4, are known to have large effects on the vernalization response, but the effects on cold hardiness are ambiguous. Poor cold tolerance has restricted winter wheat production in regions of high winter stress [9]. It was known that nearly all wheat chromosomes [5] or at least 10 chromosomes of 21 chromosome pairs are important in winter hardiness [15]. The objective of present study was to clarify the role of each chromosome in cold tolerance. With this purpose we used 20 isogenic lines of wheat. In each one of these isogenic lines only a chromosome from ‘Bezostaya’ variety (a winter habit cultivar) was substituted to ‘Capple desprez’ variety. The plant materials were planted in controlled conditions with 20º C and 16 h day length in moderately cold areas of Iran at Karaj Agricultural Research Station in 2006-07 and the acclimation period was completed for about 4 weeks in a cold room with 4º C. The cold hardiness of these isogenic lines was measured by LT50 (the temperature in which 50% of the plants are killed by freezing stress).The experimental design was completely randomized block design (RCBD)with three replicates. The results showed that chromosome 5A had a major effect on freezing tolerance, and then chromosomes 1A and 4A had less effect on this trait. Further studies are essential to understanding the importance of each chromosome in controlling cold hardiness in wheat.

Fault Classification of a Doubly FED Induction Machine Using Neural Network

Rapid progress in process automation and tightening quality standards result in a growing demand being placed on fault detection and diagnostics methods to provide both speed and reliability of motor quality testing. Doubly fed induction generators are used mainly for wind energy conversion in MW power plants. This paper presents a detection of an inter turn stator and an open phase faults, in a doubly fed induction machine whose stator and rotor are supplied by two pulse width modulation (PWM) inverters. The method used in this article to detect these faults, is based on Park-s Vector Approach, using a neural network.

Robust UKF Insensitive to Measurement Faults for Pico Satellite Attitude Estimation

In the normal operation conditions of a pico satellite, conventional Unscented Kalman Filter (UKF) gives sufficiently good estimation results. However, if the measurements are not reliable because of any kind of malfunction in the estimation system, UKF gives inaccurate results and diverges by time. This study, introduces Robust Unscented Kalman Filter (RUKF) algorithms with the filter gain correction for the case of measurement malfunctions. By the use of defined variables named as measurement noise scale factor, the faulty measurements are taken into the consideration with a small weight and the estimations are corrected without affecting the characteristic of the accurate ones. Two different RUKF algorithms, one with single scale factor and one with multiple scale factors, are proposed and applied for the attitude estimation process of a pico satellite. The results of these algorithms are compared for different types of measurement faults in different estimation scenarios and recommendations about their applications are given.

Development of Face Surrogate for Impact Protection Design for Cyclist

Bicycle usage for exercise, recreation, and commuting to work in Australia shows that pedal cycling is the fourth most popular activity with 10.6% increase in participants between 2001 and 2007. As with other means of transport, accident and injury becomes common although mandatory bicycle helmet wearing has been introduced. The research aims to develop a face surrogate made of sandwich of rigid foam and rubber sheets to represent human facial bone under blunt impact. The facial surrogate will serve as an important test device for further development of facial-impact protection for cyclist. A test procedure was developed to simulate the energy of impact and record data to evaluate the effect of impact on facial bones. Drop tests were performed to establish a suitable combination of materials. It was found that the sandwich structure of rigid extruded-polystyrene foam (density of 40 kg/m3 with a pattern of 6-mm-holes), Neoprene rubber sponge, and Abrasaflex rubber backing, had impact characteristics comparable to that of human facial bone. In particular, the foam thickness of 30 mm and 25 mm was found suitable to represent human zygoma (cheekbone) and maxilla (upper-jaw bone), respectively.

Propagation of a Generalized Beam in ABCD System

For a generalized Hermite sinosiodal / hyperbolic Gaussian beam passing through an ABCD system with a finite aperture, the propagation properties are derived using the Collins integral. The results are obtained in the form of intensity graphs indicating that previously demonstrated rules of reciprocity are applicable, while the existence of the aperture accelerates this transformation.

Investigation on Metalosalen Complexes Binding to DNA using Ab Initio Calculations

Geometry optimizations of metal complexes of Salen(bis(Salicylidene)1,2-ethylenediamine) were carried out at HF and DFT methods employing Lanl2DZ basis set. In this work structural, energies, bond lengths and other physical properties between Mn2+,Cu2+ and Ni2+ ions coordinated by salen–type ligands are examined. All calculations were performed using Gaussian 98W program series. To investigate local aromaticities, NICS were calculated at all centers of rings. The higher the band gap indicating a higher global aromaticity. The possible binding energies have been evaluated. We have evaluated Frequencies and Zero-point energy with freq calculation. The NICS(Nucleous Independent Chemical Shift) Results show Ni(II) complexes are antiaromatic and aromaticites of Mn(II) complexes are larger than Cu(II) complexes. The energy Results show Cu(II) complexes are stability than Mn(II) and Ni(II) complexes.

CFD Simulation of Dense Gas Extraction through Polymeric Membranes

In this study is presented a general methodology to predict the performance of a continuous near-critical fluid extraction process to remove compounds from aqueous solutions using hollow fiber membrane contactors. A comprehensive 2D mathematical model was developed to study Porocritical extraction process. The system studied in this work is a membrane based extractor of ethanol and acetone from aqueous solutions using near-critical CO2. Predictions of extraction percentages obtained by simulations have been compared to the experimental values reported by Bothun et al. [5]. Simulations of extraction percentage of ethanol and acetone show an average difference of 9.3% and 6.5% with the experimental data, respectively. More accurate predictions of the extraction of acetone could be explained by a better estimation of the transport properties in the aqueous phase that controls the extraction of this solute.

Grid Computing for the Bi-CGSTAB Applied to the Solution of the Modified Helmholtz Equation

The problem addressed herein is the efficient management of the Grid/Cluster intense computation involved, when the preconditioned Bi-CGSTAB Krylov method is employed for the iterative solution of the large and sparse linear system arising from the discretization of the Modified Helmholtz-Dirichlet problem by the Hermite Collocation method. Taking advantage of the Collocation ma-trix's red-black ordered structure we organize efficiently the whole computation and map it on a pipeline architecture with master-slave communication. Implementation, through MPI programming tools, is realized on a SUN V240 cluster, inter-connected through a 100Mbps and 1Gbps ethernet network,and its performance is presented by speedup measurements included.

The Problem of Power and Management in the Information Society

Modern civilization has come in recent decades into a new phase in its development, called the information society. The concept of "information society" has become one of the most common. Therefore, the attempt to understand what exactly the society we live in, what are its essential features, and possible future scenarios, is important to the social and philosophical analysis. At the heart of all these deep transformations is more increasing, almost defining role knowledge and information as play substrata of «information society». The mankind opened for itself and actively exploits a new resource – information. Information society puts forward on the arena new type of the power, at the heart of which activity – mastering by a new resource: information and knowledge. The password of the new power – intelligence as synthesis of knowledge, information and communications, the strength of mind, fundamental sociocultural values. In a postindustrial society, the power of knowledge and information is crucial in the management of the company, pushing into the background the influence of money and state coercion.

Web Application Security, Attacks and Mitigation

Today’s technology is heavily dependent on web applications. Web applications are being accepted by users at a very rapid pace. These have made our work efficient. These include webmail, online retail sale, online gaming, wikis, departure and arrival of trains and flights and list is very long. These are developed in different languages like PHP, Python, C#, ASP.NET and many more by using scripts such as HTML and JavaScript. Attackers develop tools and techniques to exploit web applications and legitimate websites. This has led to rise of web application security; which can be broadly classified into Declarative Security and Program Security. The most common attacks on the applications are by SQL Injection and XSS which give access to unauthorized users who totally damage or destroy the system. This paper presents a detailed literature description and analysis on Web Application Security, examples of attacks and steps to mitigate the vulnerabilities.

Performance Comparison of Particle Swarm Optimization with Traditional Clustering Algorithms used in Self-Organizing Map

Self-organizing map (SOM) is a well known data reduction technique used in data mining. It can reveal structure in data sets through data visualization that is otherwise hard to detect from raw data alone. However, interpretation through visual inspection is prone to errors and can be very tedious. There are several techniques for the automatic detection of clusters of code vectors found by SOM, but they generally do not take into account the distribution of code vectors; this may lead to unsatisfactory clustering and poor definition of cluster boundaries, particularly where the density of data points is low. In this paper, we propose the use of an adaptive heuristic particle swarm optimization (PSO) algorithm for finding cluster boundaries directly from the code vectors obtained from SOM. The application of our method to several standard data sets demonstrates its feasibility. PSO algorithm utilizes a so-called U-matrix of SOM to determine cluster boundaries; the results of this novel automatic method compare very favorably to boundary detection through traditional algorithms namely k-means and hierarchical based approach which are normally used to interpret the output of SOM.

A New Composition Method of Admissible Support Vector Kernel Based on Reproducing Kernel

Kernel function, which allows the formulation of nonlinear variants of any algorithm that can be cast in terms of dot products, makes the Support Vector Machines (SVM) have been successfully applied in many fields, e.g. classification and regression. The importance of kernel has motivated many studies on its composition. It-s well-known that reproducing kernel (R.K) is a useful kernel function which possesses many properties, e.g. positive definiteness, reproducing property and composing complex R.K by simple operation. There are two popular ways to compute the R.K with explicit form. One is to construct and solve a specific differential equation with boundary value whose handicap is incapable of obtaining a unified form of R.K. The other is using a piecewise integral of the Green function associated with a differential operator L. The latter benefits the computation of a R.K with a unified explicit form and theoretical analysis, whereas there are relatively later studies and fewer practical computations. In this paper, a new algorithm for computing a R.K is presented. It can obtain the unified explicit form of R.K in general reproducing kernel Hilbert space. It avoids constructing and solving the complex differential equations manually and benefits an automatic, flexible and rigorous computation for more general RKHS. In order to validate that the R.K computed by the algorithm can be used in SVM well, some illustrative examples and a comparison between R.K and Gaussian kernel (RBF) in support vector regression are presented. The result shows that the performance of R.K is close or slightly superior to that of RBF.

Effect of Laser Power and Powder Flow Rate on Properties of Laser Metal Deposited Ti6Al4V

Laser Metal Deposition (LMD) is an additive manufacturing process with capabilities that include: producing new part directly from 3 Dimensional Computer Aided Design (3D CAD) model, building new part on the existing old component and repairing an existing high valued component parts that would have been discarded in the past. With all these capabilities and its advantages over other additive manufacturing techniques, the underlying physics of the LMD process is yet to be fully understood probably because of high interaction between the processing parameters and studying many parameters at the same time makes it further complex to understand. In this study, the effect of laser power and powder flow rate on physical properties (deposition height and deposition width), metallurgical property (microstructure) and mechanical (microhardness) properties on laser deposited most widely used aerospace alloy are studied. Also, because the Ti6Al4V is very expensive, and LMD is capable of reducing buy-to-fly ratio of aerospace parts, the material utilization efficiency is also studied. Four sets of experiments were performed and repeated to establish repeatability using laser power of 1.8 kW and 3.0 kW, powder flow rate of 2.88 g/min and 5.67 g/min, and keeping the gas flow rate and scanning speed constant at 2 l/min and 0.005 m/s respectively. The deposition height / width are found to increase with increase in laser power and increase in powder flow rate. The material utilization is favoured by higher power while higher powder flow rate reduces material utilization. The results are presented and fully discussed.

ROI Based Embedded Watermarking of Medical Images for Secured Communication in Telemedicine

Medical images require special safety and confidentiality because critical judgment is done on the information provided by medical images. Transmission of medical image via internet or mobile phones demands strong security and copyright protection in telemedicine applications. Here, highly secured and robust watermarking technique is proposed for transmission of image data via internet and mobile phones. The Region of Interest (ROI) and Non Region of Interest (RONI) of medical image are separated. Only RONI is used for watermark embedding. This technique results in exact recovery of watermark with standard medical database images of size 512x512, giving 'correlation factor' equals to 1. The correlation factor for different attacks like noise addition, filtering, rotation and compression ranges from 0.90 to 0.95. The PSNR with weighting factor 0.02 is up to 48.53 dBs. The presented scheme is non blind and embeds hospital logo of 64x64 size.

Kernel Matching versus Inverse Probability Weighting: A Comparative Study

Recent quasi-experimental evaluation of the Canadian Active Labour Market Policies (ALMP) by Human Resources and Skills Development Canada (HRSDC) has provided an opportunity to examine alternative methods to estimating the incremental effects of Employment Benefits and Support Measures (EBSMs) on program participants. The focus of this paper is to assess the efficiency and robustness of inverse probability weighting (IPW) relative to kernel matching (KM) in the estimation of program effects. To accomplish this objective, the authors compare pairs of 1,080 estimates, along with their associated standard errors, to assess which type of estimate is generally more efficient and robust. In the interest of practicality, the authorsalso document the computationaltime it took to produce the IPW and KM estimates, respectively.

Interethnic and Interconfessional Agreements are Major Factors of the Political Stability in the Republic of Kazakhstan

In the article the historical formation of interethnic and interconfessional agreement policy in Kazakhstan and their developing features at present time will be analyzed. The successfully pursued by Kazakhstan at the present in the direction of ethnic and confessional policy is regarded as a major factor in promoting stability for the country.

Analyzing the Effects of Resource Relatedness on Strategic Alliances Performance

Very few studies have examined performance implications of strategic alliance announcements in the information technologies industry from a resource-based view. Furthermore, none of these studies have investigated resource congruence and alliance motive as potential sources of abnormal firm performance. This paper extends upon current resource-based literature to discover and explore linkages between these concepts and the practical performance of strategic alliances. This study finds that strategic alliance announcements have provided overall abnormal positive returns, and that marketing alliances with marketing resource incongruence have also contributed to significant firm performance.

Solving One-dimensional Hyperbolic Telegraph Equation Using Cubic B-spline Quasi-interpolation

In this paper, the telegraph equation is solved numerically by cubic B-spline quasi-interpolation .We obtain the numerical scheme, by using the derivative of the quasi-interpolation to approximate the spatial derivative of the dependent variable and a low order forward difference to approximate the temporal derivative of the dependent variable. The advantage of the resulting scheme is that the algorithm is very simple so it is very easy to implement. The results of numerical experiments are presented, and are compared with analytical solutions by calculating errors L2 and L∞ norms to confirm the good accuracy of the presented scheme.

Economic Factors Affecting Rice Export of Thailand

The purpose of this study was primarily assessing how important economic factors namely: The Thai export price of white rice, the exchange rate, and the world rice consumption affect the overall Thai white rice export, using historical data during the period 1989-2013 from the Thai Rice Exporters Association, and Food and Agricultural Organization of the United Nations. The co-integration method, regression analysis, and error correction model were applied to investigate the econometric model. The findings indicated that in the long-run, the world rice consumption, the exchange rate, and the Thai export price of white rice were the important factors affecting the export quantity of Thai white rice respectively, as indicated by their significant coefficients. Meanwhile, the rice export price was an important factor affecting the export quantity of Thai white rice in the short-run. This information is useful in the business, export opportunities, price competitiveness, and policymaker in Thailand.

A New Framework and a Model for Product Development with an Application in the Telecommunications Services Sector

This paper argues that a product development exercise involves in addition to the conventional stages, several decisions regarding other aspects. These aspects should be addressed simultaneously in order to develop a product that responds to the customer needs and that helps realize objectives of the stakeholders in terms of profitability, market share and the like. We present a framework that encompasses these different development dimensions. The framework shows that a product development methodology such as the Quality Function Deployment (QFD) is the basic tool which allows definition of the target specifications of a new product. Creativity is the first dimension that enables the development exercise to live and end successfully. A number of group processes need to be followed by the development team in order to ensure enough creativity and innovation. Secondly, packaging is considered to be an important extension of the product. Branding strategies, quality and standardization requirements, identification technologies, design technologies, production technologies and costing and pricing are also integral parts to the development exercise. These dimensions constitute the proposed framework. The paper also presents a mathematical model used to calculate the design targets based on the target costing principle. The framework is used to study a case of a new product development in the telecommunications services sector.