Motion Planning and Control of Autonomous Robots in a Two-dimensional Plane

This paper proposes a solution to the motion planning and control problem of a point-mass robot which is required to move safely to a designated target in a priori known workspace cluttered with fixed elliptical obstacles of arbitrary position and sizes. A tailored and unique algorithm for target convergence and obstacle avoidance is proposed that will work for any number of fixed obstacles. The control laws proposed in this paper also ensures that the equilibrium point of the given system is asymptotically stable. Computer simulations with the proposed technique and applications to a planar (RP) manipulator will be presented.

Histogram Slicing to Better Reveal Special Thermal Objects

In this paper, an experimentation to enhance the visibility of hot objects in a thermal image acquired with ordinary digital camera is reported, after the applications of lowpass and median filters to suppress the distracting granular noises. The common thresholding and slicing techniques were used on the histogram at different gray levels, followed by a subjective comparative evaluation. The best result came out with the threshold level 115 and the number of slices 3.

A New Image Encryption Approach using Combinational Permutation Techniques

This paper proposes a new approach for image encryption using a combination of different permutation techniques. The main idea behind the present work is that an image can be viewed as an arrangement of bits, pixels and blocks. The intelligible information present in an image is due to the correlations among the bits, pixels and blocks in a given arrangement. This perceivable information can be reduced by decreasing the correlation among the bits, pixels and blocks using certain permutation techniques. This paper presents an approach for a random combination of the aforementioned permutations for image encryption. From the results, it is observed that the permutation of bits is effective in significantly reducing the correlation thereby decreasing the perceptual information, whereas the permutation of pixels and blocks are good at producing higher level security compared to bit permutation. A random combination method employing all the three techniques thus is observed to be useful for tactical security applications, where protection is needed only against a casual observer.

A Reliable Secure Multicast Key Distribution Scheme for Mobile Adhoc Networks

Reliable secure multicast communication in mobile adhoc networks is challenging due to its inherent characteristics of infrastructure-less architecture with lack of central authority, high packet loss rates and limited resources such as bandwidth, time and power. Many emerging commercial and military applications require secure multicast communication in adhoc environments. Hence key management is the fundamental challenge in achieving reliable secure communication using multicast key distribution for mobile adhoc networks. Thus in designing a reliable multicast key distribution scheme, reliability and congestion control over throughput are essential components. This paper proposes and evaluates the performance of an enhanced optimized multicast cluster tree algorithm with destination sequenced distance vector routing protocol to provide reliable multicast key distribution. Simulation results in NS2 accurately predict the performance of proposed scheme in terms of key delivery ratio and packet loss rate under varying network conditions. This proposed scheme achieves reliability, while exhibiting low packet loss rate with high key delivery ratio compared with the existing scheme.

Utilizing Adaptive Software to Enhance Information Management

The task of strategic information technology management is to focus on adapting technology to ensure competitiveness. A key factor for success in this sector is awareness and readiness to deploy new technologies and exploit the services they offer. Recently, the need for more flexible and dynamic user interfaces (UIs) has been recognized, especially in mobile applications. An ongoing research project (MOP), initiated by TUT in Finland, is looking at how mobile device UIs can be adapted for different needs and contexts. It focuses on examining the possibilities to develop adapter software for solving the challenges related to the UI and its flexibility in mobile devices. This approach has great potential for enhancing information transfer in mobile devices, and consequently for improving information management. The technology presented here could be one of the key emerging technologies in the information technology sector in relation to mobile devices and telecommunications.

Compact Planar Antenna for UWB Applications

In this paper, a planar antenna for UWB applications has been proposed. The antenna consists of a square patch, a partial ground plane and a slot on the ground plane. The proposed antenna is easy to be integrated with microwave circuitry for low manufacturing cost. The flat type antenna has a compact structure and the total size is 14.5×14.5mm2. The result shows that the impedance bandwidth (VSWR≤ 2) of the proposed antenna is 12.49 GHz (2.95 to 15.44 GHz), which is equivalent to 135.8%. Details of the proposed compact planar UWB antenna design is presented and discussed.

Application of Artificial Intelligence Techniques for Dissolved Gas Analysis of Transformers-A Review

The gases generated in oil filled transformers can be used for qualitative determination of incipient faults. The Dissolved Gas Analysis has been widely used by utilities throughout the world as the primarily diagnostic tool for transformer maintenance. In this paper, various Artificial Intelligence Techniques that have been used by the researchers in the past have been reviewed, some conclusions have been drawn and a sequential hybrid system has been proposed. The synergy of ANN and FIS can be a good solution for reliable results for predicting faults because one should not rely on a single technology when dealing with real–life applications.

Data Transformation Services (DTS): Creating Data Mart by Consolidating Multi-Source Enterprise Operational Data

Trends in business intelligence, e-commerce and remote access make it necessary and practical to store data in different ways on multiple systems with different operating systems. As business evolve and grow, they require efficient computerized solution to perform data update and to access data from diverse enterprise business applications. The objective of this paper is to demonstrate the capability of DTS [1] as a database solution for automatic data transfer and update in solving business problem. This DTS package is developed for the sales of variety of plants and eventually expanded into commercial supply and landscaping business. Dimension data modeling is used in DTS package to extract, transform and load data from heterogeneous database systems such as MySQL, Microsoft Access and Oracle that consolidates into a Data Mart residing in SQL Server. Hence, the data transfer from various databases is scheduled to run automatically every quarter of the year to review the efficient sales analysis. Therefore, DTS is absolutely an attractive solution for automatic data transfer and update which meeting today-s business needs.

Optimizing of Fuzzy C-Means Clustering Algorithm Using GA

Fuzzy C-means Clustering algorithm (FCM) is a method that is frequently used in pattern recognition. It has the advantage of giving good modeling results in many cases, although, it is not capable of specifying the number of clusters by itself. In FCM algorithm most researchers fix weighting exponent (m) to a conventional value of 2 which might not be the appropriate for all applications. Consequently, the main objective of this paper is to use the subtractive clustering algorithm to provide the optimal number of clusters needed by FCM algorithm by optimizing the parameters of the subtractive clustering algorithm by an iterative search approach and then to find an optimal weighting exponent (m) for the FCM algorithm. In order to get an optimal number of clusters, the iterative search approach is used to find the optimal single-output Sugenotype Fuzzy Inference System (FIS) model by optimizing the parameters of the subtractive clustering algorithm that give minimum least square error between the actual data and the Sugeno fuzzy model. Once the number of clusters is optimized, then two approaches are proposed to optimize the weighting exponent (m) in the FCM algorithm, namely, the iterative search approach and the genetic algorithms. The above mentioned approach is tested on the generated data from the original function and optimal fuzzy models are obtained with minimum error between the real data and the obtained fuzzy models.

Chips of Ti-6Al-2Sn-4Zr-6Mo Alloy – A Detailed Geometry Study

Titanium alloys like Ti-6Al-2Sn-4Zr-6Mo (Ti- 6246) are widely used in aerospace applications. Component manufacturing, however, is difficult and expensive as their machinability is extremely poor. A thorough understanding of the chip formation process is needed to improve related metal cutting operations.In the current study, orthogonal cutting experiments have been performed and theresulting chips were analyzed by optical microscopy and scanning electron microscopy.Chips from aTi- 6246ingot were produced at different cutting speeds and cutting depths. During the experiments, depending of the cutting conditions, continuous or segmented chips were formed. Narrow, highly deformed and grain oriented zones, the so-called shear zone, separated individual segments. Different material properties have been measured in the shear zones and the segments.

Self-evolving Artificial Immune System via Developing T and B Cell for Permutation Flow-shop Scheduling Problems

Artificial Immune System is applied as a Heuristic Algorithm for decades. Nevertheless, many of these applications took advantage of the benefit of this algorithm but seldom proposed approaches for enhancing the efficiency. In this paper, a Self-evolving Artificial Immune System is proposed via developing the T and B cell in Immune System and built a self-evolving mechanism for the complexities of different problems. In this research, it focuses on enhancing the efficiency of Clonal selection which is responsible for producing Affinities to resist the invading of Antigens. T and B cell are the main mechanisms for Clonal Selection to produce different combinations of Antibodies. Therefore, the development of T and B cell will influence the efficiency of Clonal Selection for searching better solution. Furthermore, for better cooperation of the two cells, a co-evolutional strategy is applied to coordinate for more effective productions of Antibodies. This work finally adopts Flow-shop scheduling instances in OR-library to validate the proposed algorithm.

MJPEG Real-Time Transmission in Industrial Environments Using a CBR Channel

Currently, there are many local area industrial networks that can give guaranteed bandwidth to synchronous traffic, particularly providing CBR channels (Constant Bit Rate), which allow improved bandwidth management. Some of such networks operate over Ethernet, delivering channels with enough capacity, specially with compressors, to integrate multimedia traffic in industrial monitoring and image processing applications with many sources. In these industrial environments where a low latency is an essential requirement, JPEG is an adequate compressing technique but it generates VBR traffic (Variable Bit Rate). Transmitting VBR traffic in CBR channels is inefficient and current solutions to this problem significantly increase the latency or further degrade the quality. In this paper an R(q) model is used which allows on-line calculation of the JPEG quantification factor. We obtained increased quality, a lower requirement for the CBR channel with reduced number of discarded frames along with better use of the channel bandwidth.

An Efficient Data Mining Approach on Compressed Transactions

In an era of knowledge explosion, the growth of data increases rapidly day by day. Since data storage is a limited resource, how to reduce the data space in the process becomes a challenge issue. Data compression provides a good solution which can lower the required space. Data mining has many useful applications in recent years because it can help users discover interesting knowledge in large databases. However, existing compression algorithms are not appropriate for data mining. In [1, 2], two different approaches were proposed to compress databases and then perform the data mining process. However, they all lack the ability to decompress the data to their original state and improve the data mining performance. In this research a new approach called Mining Merged Transactions with the Quantification Table (M2TQT) was proposed to solve these problems. M2TQT uses the relationship of transactions to merge related transactions and builds a quantification table to prune the candidate itemsets which are impossible to become frequent in order to improve the performance of mining association rules. The experiments show that M2TQT performs better than existing approaches.

EMOES: Eye Motion and Ocular Expression Simulator

We introduce, a new interactive 3D simulation system of ocular motion and expressions suitable for: (1) character animation applications to game design, film production, HCI (Human Computer Interface), conversational animated agents, and virtual reality; (2) medical applications (ophthalmic neurological and muscular pathologies: research and education); and (3) real time simulation of unconscious cognitive and emotional responses (for use, e.g., in psychological research). The system is comprised of: (1) a physiologically accurate parameterized 3D model of the eyes, eyelids, and eyebrow regions; and (2) a prototype device for realtime control of eye motions and expressions, including unconsciously produced expressions, for application as in (1), (2), and (3) above. The 3D eye simulation system, created using state-of-the-art computer animation technology and 'optimized' for use with an interactive and web deliverable platform, is, to our knowledge, the most advanced/realistic available so far for applications to character animation and medical pedagogy.

A Bionic Approach to Dynamic, Multimodal Scene Perception and Interpretation in Buildings

Today, building automation is advancing from simple monitoring and control tasks of lightning and heating towards more and more complex applications that require a dynamic perception and interpretation of different scenes occurring in a building. Current approaches cannot handle these newly upcoming demands. In this article, a bionically inspired approach for multimodal, dynamic scene perception and interpretation is presented, which is based on neuroscientific and neuro-psychological research findings about the perceptual system of the human brain. This approach bases on data from diverse sensory modalities being processed in a so-called neuro-symbolic network. With its parallel structure and with its basic elements being information processing and storing units at the same time, a very efficient method for scene perception is provided overcoming the problems and bottlenecks of classical dynamic scene interpretation systems.

When Construction Material Traders Goes Electronic: Analysis of SMEs in Malaysian Construction Industry

This paper analyzed the perception of e-commerce application services by construction material traders in Malaysia. Five attributes were tested: usability, reputation, trust, privacy and familiarity. Study methodology consists of survey questionnaire and statistical analysis that includes reliability analysis, factor analysis, ANOVA and regression analysis. The respondents were construction material traders, including hardware stores in Klang Valley, Kuala Lumpur. Findings support that usability and familiarity with e-commerce services in Malaysia have insignificant influence on the acceptance of e-commerce application. However, reputation, trust and privacy attributes have significant influence on the choice of e-commerce acceptance by construction material traders. E-commerce applications studied included customer database, e-selling, emarketing, e-payment, e-buying and online advertising. Assumptions are made that traders have basic knowledge and exposure to ICT services. i.e. internet service and computers. Study concludes that reputation, privacy and trust are the three website attributes that influence the acceptance of e-commerce by construction material traders.

OCR for Script Identification of Hindi (Devnagari) Numerals using Error Diffusion Halftoning Algorithm with Neural Classifier

The applications on numbers are across-the-board that there is much scope for study. The chic of writing numbers is diverse and comes in a variety of form, size and fonts. Identification of Indian languages scripts is challenging problems. In Optical Character Recognition [OCR], machine printed or handwritten characters/numerals are recognized. There are plentiful approaches that deal with problem of detection of numerals/character depending on the sort of feature extracted and different way of extracting them. This paper proposes a recognition scheme for handwritten Hindi (devnagiri) numerals; most admired one in Indian subcontinent our work focused on a technique in feature extraction i.e. Local-based approach, a method using 16-segment display concept, which is extracted from halftoned images & Binary images of isolated numerals. These feature vectors are fed to neural classifier model that has been trained to recognize a Hindi numeral. The archetype of system has been tested on varieties of image of numerals. Experimentation result shows that recognition rate of halftoned images is 98 % compared to binary images (95%).

IMM based Kalman Filter for Channel Estimation in MB OFDM Systems

Ultra-wide band (UWB) communication is one of the most promising technologies for high data rate wireless networks for short range applications. This paper proposes a blind channel estimation method namely IMM (Interactive Multiple Model) Based Kalman algorithm for UWB OFDM systems. IMM based Kalman filter is proposed to estimate frequency selective time varying channel. In the proposed method, two Kalman filters are concurrently estimate the channel parameters. The first Kalman filter namely Static Model Filter (SMF) gives accurate result when the user is static while the second Kalman filter namely the Dynamic Model Filter (DMF) gives accurate result when the receiver is in moving state. The static transition matrix in SMF is assumed as an Identity matrix where as in DMF, it is computed using Yule-Walker equations. The resultant filter estimate is computed as a weighted sum of individual filter estimates. The proposed method is compared with other existing channel estimation methods.

Some Separations in Covering Approximation Spaces

Adopting Zakowski-s upper approximation operator C and lower approximation operator C, this paper investigates granularity-wise separations in covering approximation spaces. Some characterizations of granularity-wise separations are obtained by means of Pawlak rough sets and some relations among granularitywise separations are established, which makes it possible to research covering approximation spaces by logical methods and mathematical methods in computer science. Results of this paper give further applications of Pawlak rough set theory in pattern recognition and artificial intelligence.

Comparison of Compression Ability Using DCT and Fractal Technique on Different Imaging Modalities

Image compression is one of the most important applications Digital Image Processing. Advanced medical imaging requires storage of large quantities of digitized clinical data. Due to the constrained bandwidth and storage capacity, however, a medical image must be compressed before transmission and storage. There are two types of compression methods, lossless and lossy. In Lossless compression method the original image is retrieved without any distortion. In lossy compression method, the reconstructed images contain some distortion. Direct Cosine Transform (DCT) and Fractal Image Compression (FIC) are types of lossy compression methods. This work shows that lossy compression methods can be chosen for medical image compression without significant degradation of the image quality. In this work DCT and Fractal Compression using Partitioned Iterated Function Systems (PIFS) are applied on different modalities of images like CT Scan, Ultrasound, Angiogram, X-ray and mammogram. Approximately 20 images are considered in each modality and the average values of compression ratio and Peak Signal to Noise Ratio (PSNR) are computed and studied. The quality of the reconstructed image is arrived by the PSNR values. Based on the results it can be concluded that the DCT has higher PSNR values and FIC has higher compression ratio. Hence in medical image compression, DCT can be used wherever picture quality is preferred and FIC is used wherever compression of images for storage and transmission is the priority, without loosing picture quality diagnostically.