Abstract: Chip formation characteristics are investigated during surface finishing of high density polyethylene (HDPE) samples using a shaper machine. Both the cutting speed and depth of cut are varied continually to enable observations under various machining conditions. The generated chips are analyzed in terms of their shape, size, and deformation. Their physical appearances are also observed using digital camera and optical microscope. The investigation shows that continuous chips are obtained for all the cutting conditions. It is observed that cutting speed is more influential than depth of cut to cause dimensional changes of chips. Chips curl radius is also found to increase gradually with the increase of cutting speed. The length of continuous chips remains always smaller than the job length, and the corresponding discrepancies are found to be more prominent at lower cutting speed. Microstructures of the chips reveal that cracks are formed at higher cutting speeds and depth of cuts, which is not that significant at low depth of cut.
Abstract: Selective laser melting (SLM), a promising additive manufacturing (AM) technology, has a huge potential in the fabrication of Ti-6Al-4V near-net shape components. However, poor surface finish of the components fabricated from this technology requires secondary machining to achieve the desired accuracy and tolerance. Therefore, a systematic understanding of the machinability of SLM fabricated Ti-6Al-4V components is paramount to improve the productivity and product quality. Considering the significance of machining in SLM fabricated Ti-6Al-4V components, this research aim is to study the influence of build orientation on machinability characteristics by performing low speed orthogonal cutting tests. In addition, the machinability of SLM fabricated Ti-6Al-4V is compared with conventionally produced wrought Ti-6Al-4V to understand the influence of SLM technology on machining. This paper is an attempt to provide evidence to the hypothesis associated that build orientation influences cutting forces, chip formation and surface integrity during orthogonal cutting of SLM Ti-6Al-4V samples. Results obtained from the low speed orthogonal cutting tests highlight the practical importance of microstructure and build orientation on machinability of SLM Ti-6Al-4V.
Abstract: Titanium alloys like Ti-6Al-2Sn-4Zr-6Mo (Ti-
6246) are widely used in aerospace applications. Component
manufacturing, however, is difficult and expensive as their
machinability is extremely poor. A thorough understanding of the
chip formation process is needed to improve related metal cutting
operations.In the current study, orthogonal cutting experiments have
been performed and theresulting chips were analyzed by optical
microscopy and scanning electron microscopy.Chips from aTi-
6246ingot were produced at different cutting speeds and cutting
depths. During the experiments, depending of the cutting conditions,
continuous or segmented chips were formed. Narrow, highly
deformed and grain oriented zones, the so-called shear zone,
separated individual segments. Different material properties have
been measured in the shear zones and the segments.
Abstract: Metal cutting is a severe plastic deformation process
involving large strains, high strain rates, and high temperatures.
Conventional analysis of the chip formation process is based on bulk
material deformation disregarding the inhomogeneous nature of the
material microstructure. A series of orthogonal cutting tests of AISI
1045 and 1144 steel were conducted which yielded similar process
characteristics and chip formations. With similar shear angles and cut
chip thicknesses, shear strains for both chips were found to range
from 2.0 up to 2.8. The manganese-sulfide (MnS) precipitate in the
1144 steel has a very distinct and uniform shape which allows for
comparison before and after chip formation. From close observations
of MnS precipitates in the cut chips it is shown that the conventional
approach underestimates plastic strains in metal cutting.
Experimental findings revealed local shear strains around a value of
6. These findings and their implications are presented and discussed.
Abstract: Cutting fluids, usually in the form of a liquid, are
applied to the chip formation zone in order to improve the cutting
conditions. Cutting fluid can be expensive and represents a biological
and environmental hazard that requires proper recycling and
disposal, thus adding to the cost of the machining operation. For
these reasons dry cutting or dry machining has become an
increasingly important approach; in dry machining no coolant or
lubricant is used. This paper discussed the effect of the dry cutting on
cutting force and tool life when machining aerospace materials
(Haynes 242) with using two different coated carbide cutting tools
(TiAlN and TiN/MT-TiCN/TiN). Response surface method (RSM)
was used to minimize the number of experiments. ParTiAlN Swarm
Optimisation (PSO) models were developed to optimize the
machining parameters (cutting speed, federate and axial depth) and
obtain the optimum cutting force and tool life. It observed that
carbide cutting tool coated with TiAlN performed better in dry
cutting compared with TiN/MT-TiCN/TiN. On other hand, TiAlN
performed more superior with using of 100 % water soluble coolant.
Due to the high temperature produced by aerospace materials, the
cutting tool still required lubricant to sustain the heat transfer from
the workpiece.
Abstract: Machining through turning was carried out in a lathe
to study the chip formation of Multiphase Ferrite
(F-B-M) microalloyed steel. Taguchi orthogonal array was employed
to perform the machining. Continuous and discontinuous chips were
formed for different cutting parameters like speed, feed and depth of
cut. Optical and scanning electron microscope was employed to
identify the chip morphology.