New Product Development Process on High-Tech Innovation Life Cycle

This work will provide a new perspective of exploring innovation thematic. It will reveal that radical and incremental innovations are complementary during the innovation life cycle and accomplished through distinct ways of developing new products. Each new product development process will be constructed according to the nature of each innovation and the state of the product development. This paper proposes the inclusion of the organizational function areas that influence new product's development on the new product development process.

Pervasive Differentiated Services: A QoS Model for Pervasive Systems

In this article, we introduce a mechanism by which the same concept of differentiated services used in network transmission can be applied to provide quality of service levels to pervasive systems applications. The classical DiffServ model, including marking and classification, assured forwarding, and expedited forwarding, are all utilized to create quality of service guarantees for various pervasive applications requiring different levels of quality of service. Through a collection of various sensors, personal devices, and data sources, the transmission of contextsensitive data can automatically occur within a pervasive system with a given quality of service level. Triggers, initiators, sources, and receivers are four entities labeled in our mechanism. An explanation of the role of each is provided, and how quality of service is guaranteed.

Intelligent Audio Watermarking using Genetic Algorithm in DWT Domain

In this paper, an innovative watermarking scheme for audio signal based on genetic algorithms (GA) in the discrete wavelet transforms is proposed. It is robust against watermarking attacks, which are commonly employed in literature. In addition, the watermarked image quality is also considered. We employ GA for the optimal localization and intensity of watermark. The watermark detection process can be performed without using the original audio signal. The experimental results demonstrate that watermark is inaudible and robust to many digital signal processing, such as cropping, low pass filter, additive noise.

Functionalization and Characterization of Carbon Nanotubes/ Polypropylene Nanocomposite

Chemical and physical functionalization of multiwalled carbon nanotubes (MWCNT) has been commonly practiced to achieve better dispersion of carbon nanotubes (CNTs) in polymer matrix. This work describes various functionalization methods (acidtreatment, non-ionic surfactant treatment with TritonX-100), fabrication of MWCNT/PP nanocomposites via melt blending and characterization of mechanical properties. Microscopy analysis (FESEM, TEM, XPS) showed effective purification of MWCNTs under acid treatment, and better dispersion under both chemical and physical functionalization techniques combined, in their respective order. Tensile tests showed increase in tensile strength for the nanocomposites that contain MWCNTs up to 2 wt%. A decrease in tensile strength was seen in samples that contain 4 wt% of MWCNTs for both raw and Triton X-100 functionalized, signifying MWCNT degradation/rebundling at composition with higher content of MWCNTs. For the acid-treated MWCNTs, however, the tensile results showed slight improvement even at 4wt%, indicating effective dispersion of MWCNTs.

Emission Constrained Economic Dispatch for Hydrothermal Coordination

This paper presents an efficient emission constrained economic dispatch algorithm that deals with nonlinear cost function and constraints. It is then incorporated into the dynamic programming based hydrothermal coordination program. The program has been tested on a practical utility system having 32 thermal and 12 hydro generating units. Test results show that a slight increase in production cost causes a substantial reduction in emission.

Face Recognition Using Morphological Shared-weight Neural Networks

We introduce an algorithm based on the morphological shared-weight neural network. Being nonlinear and translation-invariant, the MSNN can be used to create better generalization during face recognition. Feature extraction is performed on grayscale images using hit-miss transforms that are independent of gray-level shifts. The output is then learned by interacting with the classification process. The feature extraction and classification networks are trained together, allowing the MSNN to simultaneously learn feature extraction and classification for a face. For evaluation, we test for robustness under variations in gray levels and noise while varying the network-s configuration to optimize recognition efficiency and processing time. Results show that the MSNN performs better for grayscale image pattern classification than ordinary neural networks.

Three Dimensional Analysis of Pollution Dispersion in Street Canyon

Three dimensional simulations are carried out to estimate the effect of wind direction, wind speed and geometry on the flow and dispersion of vehicular pollutant in a street canyon. The pollutant sources are motor vehicles passing between the two buildings. Suitable emission factors for petrol and diesel vehicles at varying vehicle speed are used for the estimation of the rate of emission from the streets. The dispersion of automobile pollutant released from the street is simulated by introducing vehicular emission source term as a fixed-flux boundary condition at the ground level over the road. The emission source term is suitably calculated by adopting emission factors from literature for varying conditions of street traffic. It is observed that increase in wind angle disturbs the symmetric pattern of pollution distribution along the street length. The concentration increases in the far end of the street as compared to the near end.

CFD Analysis on Aerodynamic Design Optimization of Wind Turbine Rotor Blades

Wind energy has been shown to be one of the most viable sources of renewable energy. With current technology, the low cost of wind energy is competitive with more conventional sources of energy such as coal. Most blades available for commercial grade wind turbines incorporate a straight span-wise profile and airfoil shaped cross sections. These blades are found to be very efficient at lower wind speeds in comparison to the potential energy that can be extracted. However as the oncoming wind speed increases the efficiency of the blades decreases as they approach a stall point. This paper explores the possibility of increasing the efficiency of the blades at higher wind speeds while maintaining efficiency at the lower wind speeds. The design intends to maintain efficiency at lower wind speeds by selecting the appropriate orientation and size of the airfoil cross sections based on a low oncoming wind speed and given constant rotation rate. The blades will be made more efficient at higher wind speeds by implementing a swept blade profile. Performance was investigated using the computational fluid dynamics (CFD).

Analyzing and Formulation of Product Lead Time

Product Lead Time (PLT) is the period of time from receiving a customer's order to delivering the final product. PLT is an indicator of the manufacturing controllability, efficiency and performance. Due to the explosion in the rate of technological innovations and the rapid changes in the nature of manufacturing processes, manufacturing firms can bring the new products to market quicker only if they can reduce their PLT and speed up the rate at which they can design, plan, control, and manufacture. Although there is a substantial body of research on manufacturing relating to cost and quality issues, there is no much specific research conducted in relation to the formulation of PLT, despite its significance and importance. This paper analyzes and formulates PLT which can be used as a guideline for achieving the shorter PLT. Further more this paper identifies the causes of delay and factors that contributes to the increased product lead-time.

The Using Artificial Neural Network to Estimate of Chemical Oxygen Demand

Nowadays, the increase of human population every year results in increasing of water usage and demand. Saen Saep canal is important canal in Bangkok. The main objective of this study is using Artificial Neural Network (ANN) model to estimate the Chemical Oxygen Demand (COD) on data from 11 sampling sites. The data is obtained from the Department of Drainage and Sewerage, Bangkok Metropolitan Administration, during 2007-2011. The twelve parameters of water quality are used as the input of the models. These water quality indices affect the COD. The experimental results indicate that the ANN model provides a high correlation coefficient (R=0.89).

Multiple Subcarrier Indoor Geolocation System in MIMO-OFDM WLAN APs Structure

This report aims to utilize existing and future Multiple-Input Multiple-Output Orthogonal Frequency Division Multiplexing Wireless Local Area Network (MIMO-OFDM WLAN) systems characteristics–such as multiple subcarriers, multiple antennas, and channel estimation characteristics–for indoor location estimation systems based on the Direction of Arrival (DOA) and Radio Signal Strength Indication (RSSI) methods. Hybrid of DOA-RSSI methods also evaluated. In the experimental data result, we show that location estimation accuracy performances can be increased by minimizing the multipath fading effect. This is done using multiple subcarrier frequencies over wideband frequencies to estimate one location. The proposed methods are analyzed in both a wide indoor environment and a typical room-sized office. In the experiments, WLAN terminal locations are estimated by measuring multiple subcarriers from arrays of three dipole antennas of access points (AP). This research demonstrates highly accurate, robust and hardware-free add-on software for indoor location estimations based on a MIMO-OFDM WLAN system.

Li4SiO4 Prepared by Sol-gel Method as Potential Host for LISICON Structured Solid Electrolytes

In this study, Li4SiO4 powder was successfully synthesized via sol gel method followed by drying at 150oC. Lithium oxide, Li2O and silicon oxide, SiO2 were used as the starting materials with citric acid as the chelating agent. The obtained powder was then sintered at various temperatures. Crystallographic phase analysis, morphology and ionic conductivity were investigated systematically employing X-ray diffraction, Fourier Transform Infrared, Scanning Electron Microscopy and AC impedance spectroscopy. XRD result showed the formation of pure monoclinic Li4SiO4 crystal structure with lattice parameters a = 5.140 Å, b = 6.094 Å, c = 5.293 Å, β = 90o in the sample sintered at 750oC. This observation was confirmed by FTIR analysis. The bulk conductivity of this sample at room temperature was 3.35 × 10-6 S cm-1 and the highest bulk conductivity of 1.16 × 10-4 S cm-1 was obtained at 100°C. The results indicated that, the Li4SiO4 compound has potential to be used as host for LISICON structured solid electrolyte for low temperature application.

Determining Factors for ISO14001 EMS Implementation among SMEs in Malaysia: A Resource Based View

This research aimed to find out the determining factors for ISO 14001 EMS implementation among SMEs in Malaysia from the Resource based view. A cross-sectional approach using survey was conducted. A research model been proposed which comprises of ISO 14001 EMS implementation as the criterion variable while physical capital resources (i.e. environmental performance tracking and organizational infrastructures), human capital resources (i.e. top management commitment and support, training and education, employee empowerment and teamwork) and organizational capital resources (i.e. recognition and reward, organizational culture and organizational communication) as the explanatory variables. The research findings show that only environmental performance tracking, top management commitment and support and organizational culture are found to be positively and significantly associated with ISO 14001 EMS implementation. It is expected that this research will shed new knowledge and provide a base for future studies about the role played by firm-s internal resources.

Consumption Habits of Low-Fat Plant Sterol-Enriched Yoghurt Enriched with Phytosterols

The increasing interest in plant sterol enriched foods is due to the fact that they reduce blood cholesterol concentrations without adverse side effects. In this context, enriched foods with phytosterols may be helpful in protecting population against atherosclerosis and cardiovascular diseases. The aim of the present work was to evaluate in a population of Viseu, Portugal, the consumption habits low-fat, plant sterol-enriched yoghurt. For this study, 577 inquiries were made and the sample was randomly selected for people shopping in various supermarkets. The preliminary results showed that the biggest consumers of these products were women aged 45 to 65 years old. Most of the people who claimed to buy these products consumed them once a day. Also, most of the consumers under antidyslipidemic therapeutics noticed positive effects on hypercholesterolemia.

Effect of Local Dual Frequency Sonication on Drug Distribution from Nanomicelles

The nanosized polymeric micelles release the drug due to acoustic cavitation, which is enhanced in dual frequency ultrasonic fields. In this study, adult female Balb/C mice were transplanted with spontaneous breast adenocarcinoma tumors and were injected with a dose of 1.3 mg/kg doxorubicin in one of three forms: free doxorubicin, micellar doxorubicin without sonication and micellar doxorubicin with sonication. To increase cavitation yield, the tumor region was sonicated with low level dual frequency of 3 MHz and 28 kHz. The animals were sacrificed 24 h after injection, and their tumor, heart, spleen, liver, kidneys and plasma were separated and homogenized. The drug content in their tumor, heart, spleen, liver, kidneys and plasma was determined using tissue fluorimetry. The results show that in the group that received micellar doxorubicin with sonication, the drug concentration in the tumor tissue was nine and three times higher than in the free doxorubicin group and the micellar doxorubicin without sonication group, respectively. In the micellar doxorubicin with sonication group, the drug concentration in other tissues was lower than other groups (p

Improving Co-integration Trading Rule Profitability with Forecasts from an Artificial Neural Network

Co-integration models the long-term, equilibrium relationship of two or more related financial variables. Even if cointegration is found, in the short run, there may be deviations from the long run equilibrium relationship. The aim of this work is to forecast these deviations using neural networks and create a trading strategy based on them. A case study is used: co-integration residuals from Australian Bank Bill futures are forecast and traded using various exogenous input variables combined with neural networks. The choice of the optimal exogenous input variables chosen for each neural network, undertaken in previous work [1], is validated by comparing the forecasts and corresponding profitability of each, using a trading strategy.

Energy Based Temperature Profile for Heat Transfer Analysis of Concrete Section Exposed to Fire on One Side

For fire safety purposes, the fire resistance and the structural behavior of reinforced concrete members are assessed to satisfy specific fire performance criteria. The available prescribed provisions are based on standard fire load. Under various fire scenarios, engineers are in need of both heat transfer analysis and structural analysis. For heat transfer analysis, the study proposed a modified finite difference method to evaluate the temperature profile within a cross section. The research conducted is limited to concrete sections exposed to a fire on their one side. The method is based on the energy conservation principle and a pre-determined power function of the temperature profile. The power value of 2.7 is found to be a suitable value for concrete sections. The temperature profiles of the proposed method are only slightly deviate from those of the experiment, the FEM and the FDM for various fire loads such as ASTM E 119, ASTM 1529, BS EN 1991-1-2 and 550 oC. The proposed method is useful to avoid incontinence of the large matrix system of the typical finite difference method to solve the temperature profile. Furthermore, design engineers can simply apply the proposed method in regular spreadsheet software.

Approaches and Schemes for Storing DTD-Independent XML Data in Relational Databases

The volume of XML data exchange is explosively increasing, and the need for efficient mechanisms of XML data management is vital. Many XML storage models have been proposed for storing XML DTD-independent documents in relational database systems. Benchmarking is the best way to highlight pros and cons of different approaches. In this study, we use a common benchmarking scheme, known as XMark to compare the most cited and newly proposed DTD-independent methods in terms of logical reads, physical I/O, CPU time and duration. We show the effect of Label Path, extracting values and storing in another table and type of join needed for each method's query answering.

Condition Monitoring in the Management of Maintenance in a Large Scale Precision CNC Machining Manufacturing Facility

The manufacture of large-scale precision aerospace components using CNC requires a highly effective maintenance strategy to ensure that the required accuracy can be achieved over many hours of production. This paper reviews a strategy for a maintenance management system based on Failure Mode Avoidance, which uses advanced techniques and technologies to underpin a predictive maintenance strategy. It is shown how condition monitoring (CM) is important to predict potential failures in high precision machining facilities and achieve intelligent and integrated maintenance management. There are two distinct ways in which CM can be applied. One is to monitor key process parameters and observe trends which may indicate a gradual deterioration of accuracy in the product. The other is the use of CM techniques to monitor high status machine parameters enables trends to be observed which can be corrected before machine failure and downtime occurs. It is concluded that the key to developing a flexible and intelligent maintenance framework in any precision manufacturing operation is the ability to evaluate reliably and routinely machine tool condition using condition monitoring techniques within a framework of Failure Mode Avoidance.

MONARC: A Case Study on Simulation Analysis for LHC Activities

The scale, complexity and worldwide geographical spread of the LHC computing and data analysis problems are unprecedented in scientific research. The complexity of processing and accessing this data is increased substantially by the size and global span of the major experiments, combined with the limited wide area network bandwidth available. We present the latest generation of the MONARC (MOdels of Networked Analysis at Regional Centers) simulation framework, as a design and modeling tool for large scale distributed systems applied to HEP experiments. We present simulation experiments designed to evaluate the capabilities of the current real-world distributed infrastructure to support existing physics analysis processes and the means by which the experiments bands together to meet the technical challenges posed by the storage, access and computing requirements of LHC data analysis within the CMS experiment.