Designing a Motivated Tangible Multimedia System for Preschoolers

The paper examined the capability of a prototype of a tangible multimedia system that was augmented with tangible objects in motivating young preschoolers in learning. Preschoolers’ learning behaviour is highly captivated and motivated by external physical stimuli. Hence, conventional multimedia which solely dependent on digital visual and auditory formats for knowledge delivery could potentially place them in inappropriate state of circumstances that are frustrating, boring, or worse, impede overall learning motivations. This paper begins by discussion with the objectives of the research, followed by research questions, hypotheses, ARCS model of motivation adopted in the process of macro-design, and the research instrumentation, Persuasive Multimedia Motivational Scale was deployed for measuring the level of motivation of subjects towards the experimental tangible multimedia. At the close, a succinct description of the findings of a relevant research is provided. In the research, a total of 248 preschoolers recruited from seven Malaysian kindergartens were examined. Analyses revealed that the tangible multimedia system improved preschoolers’ learning motivation significantly more than conventional multimedia. Overall, the findings led to the conclusion that the tangible multimedia system is a motivation conducive multimedia for preschoolers.

Mobile Learning in Developing Countries: A Synthesis of the Past to Define the Future

Mobile learning (m-learning) is a novel approach to knowledge acquisition and dissemination and is gaining global attention. Steady progress in wireless technologies and the portability of communication devices continue to broaden the scope and use of mobiles. With the convergence of Web functionality onto mobile platforms and the affordability and availability of mobile technology, m-learning has the potential of being the next prevalent channel of education in both formal and informal settings. There is substantive literature on developed countries but the state in developing countries (DCs) however appears vague. This paper is a synthesis of extant literature on mobile learning in DCs. The research interest is based on the fact that in DCs, mobile communication and internet connectivity are popular. However, its use in education is under explored. There are some reviews on the state, conceptualizations, trends and teacher education, but to the authors’ knowledge, no study has focused on mobile learning adoption and integration issues. This study examines issues and gaps associated with its adoption and integration in DCs higher education institutions. A qualitative build-up of literature was conducted using articles pooled from electronic databases (Google Scholar and ERIC). To enable criteria for inclusion and incorporate diverse study perspectives, search terms used were m-learning, DCs, higher education institutions, challenges, benefits, impact, gaps and issues. The synthesis revealed that though mobile technology has diffused globally, its pedagogical pursuit in DCs remains quite low. The absence of a mobile Web and the difficulty of resource conversion into mobile format due to lack of funding and technical competence is a stumbling block. Again, the lack of established design and implementation rules to guide the development of m-learning platforms in DCs is a hindrance. The absence of access restrictions on devices poses security threats to institutional systems. Negative perceptions that devices are taking over faculty roles lead to resistance in some situations. Resistance to change can be a hindrance to the acceptance and success of new systems. Lack of interest for m-learning is also attributed to lower technological literacy levels of the underprivileged masses. Scholarly works on m-learning in DCs is yet to mature. Most technological innovations are handed down from developed countries, and this constantly creates a lag for DCs. Lack of theoretical grounding was also identified which reduces the objectivity of study reports. The socio-cultural terrain of DCs results in societies with different views and needs that have been identified as a hindrance to research. Institutional commitment decisions, adequate funding for the necessary infrastructural development as well as multiple stakeholder participation is important for project success. Evidence suggests that while adoption decisions are readily made, successful integration of the concept for its full benefits to be realized is often neglected. Recommendations to findings were made to provide possible remedies to identified issues.

Renewed Urban Waterfront: Spatial Conditions of a Contemporary Urban Space Typology

The formerly industrially or militarily used Urban Waterfront is a potential area for urban development. Extensive interventions in the urban space come along with the development of these previously inaccessible areas in the city. The development of the Urban Waterfront in the European City is not subject to any recognizable urban paradigm. In this study, the development of the Urban Waterfront as a new urban space typology is analyzed by case studies of Urban Waterfront developments in European Cities. For humans, perceptible spatial conditions are categorized and it is identified whether the themed Urban Waterfront Developments are congruent or incongruent urban design interventions and which deviations the Urban Waterfront itself induce. As congruent urban design, a design is understood, which fits in the urban fabric regarding its similar spatial conditions to the surrounding. Incongruent urban design, however, shows significantly different conditions in its shape. Finally, the spatial relationship of the themed Urban Waterfront developments and their associated environment are compared in order to identify contrasts between new and old urban space. In this way, conclusions about urban design paradigms of the new urban space typology are tried to be drawn.

Multipurpose Agricultural Robot Platform: Conceptual Design of Control System Software for Autonomous Driving and Agricultural Operations Using Programmable Logic Controller

This paper discusses about the conceptual design and development of the control system software using Programmable logic controller (PLC) for autonomous driving and agricultural operations of Multipurpose Agricultural Robot Platform (MARP). Based on given initial conditions by field analysis and desired agricultural operations, the structural design development of MARP is done using modelling and analysis tool. PLC, being robust and easy to use, has been used to design the autonomous control system of robot platform for desired parameters. The robot is capable of performing autonomous driving and three automatic agricultural operations, viz. hilling, mulching, and sowing of seeds in the respective order. The input received from various sensors on the field is later transmitted to the controller via ZigBee network to make the changes in the control program to get desired field output. The research is conducted to provide assistance to farmers by reducing labor hours for agricultural activities by implementing automation. This study will provide an alternative to the existing systems with machineries attached behind tractors and rigorous manual operations on agricultural field at effective cost.

Self-Healing Performance of Heavyweight Concrete with Steam Curing

In this study, the crack self-healing performance of the heavyweight concrete used in the walls of containers and structures designed to shield radioactive materials was investigated. A steam curing temperature that preserves self-healing properties and demolding strength was identified. The presented simultaneously mixing method using the expanding material and the fly ash in the process of admixture can maximize the self-curing performance. Also adding synthetic fibers in the heavyweight concrete improved the self-healing performance.

Adverse Drug Reactions Monitoring in the Northern Region of Zambia

The Copperbelt University Health Services (CBUHS) was designated by the Zambia Medicines Regulatory Authority (ZAMRA), formally the Pharmaceutical Regulatory Authority (PRA) as a regional pharmacovigilance centre to carryout activities of drug safety monitoring in four provinces in Zambia. CBUHS’s mandate included stimulating the reporting of adverse drug reactions (ADRs), as well as collecting and collating ADR reports from health institutions in the four provinces. This report covers the researchers’ experiences from May 2008 to September, 2016. The main objectives are 1) to monitor ADRs in the Zambian population, 2) to disseminate information to all health professionals in the region advising that the CBU health was a centre for reporting ADRs in the region, 3) to monitor polypharmacy as well as the benefit-risk profile of medicines, 4) to generate independent, evidence based recommendations on the safety of medicines, 5) to support ZAMRA in formulating safety related regulatory decisions for medicines, and 6) to communicate findings with all key stakeholders. The methodology involved monthly visits, beginning in early May 2008 to September, 2016, by the CBUHS to health institutions in the programme areas. Activities included holding discussions with health workers, distribution of ADR forms and collection of ADRs reports. These reports, once collected, were documented and assessed at the CBUHS. A report was then prepared for ZAMRA on quarterly basis. At ZAMRA, serious ADRs were noted and recommendations made to the Ministry of Health of the Republic of Zambia. The results show that 2,600 ADRs reports were received at the pharmacovigilance regional centre. Most of the ADRs reports that received were due to antiretroviral drugs, as well as a few from anti-malarial drugs like Artemether/Lumefantrine – Coartem®. Three hundred and twelve ADRs were entered in the Uppsala Monitoring Centre WHO Vigiflow for further analysis. It was concluded that in general, 2008-16 were exciting years for the pharmacovigilance group at CBUHS. From a very tentative beginning, a lot of strides were made and contacts established with healthcare facilities in the region. The researchers were encouraged by the support received from the Copperbelt University management, the motivation provided by ZAMRA and most importantly the enthusiasm of health workers in all the health care facilities visited. As a centre for drug safety in Zambia, the results show it achieves its objectives for monitoring ADRs, Pharmacovigilance (drug safety monitoring), and activities of monitoring ADRs as well as preventing them. However, the centre faces critical challenges caused by erratic funding that prevents the smooth running of the programme.

Application of Robotics to Assemble a Used Fuel Container in the Canadian Used Fuel Packing Plant

The newest Canadian Used Fuel Container (UFC)- (called also “Mark II”) modifies the design approach for its Assembly Robotic Cell (ARC) in the Canadian Used (Nuclear) Fuel Packing Plant (UFPP). Some of the robotic design solutions are presented in this paper. The design indicates that robots and manipulators are expected to be used in the Canadian UFPP. As normally, the UFPP design will incorporate redundancy of all equipment to allow expedient recovery from any postulated upset conditions. Overall, this paper suggests that robot usage will have a significant positive impact on nuclear safety, quality, productivity, and reliability.

The Relationship between Human Values and Service Quality with the Mediating Role of Motivation: A Quantitative Study on Malaysian Commercial Banks

This study explores the mediating effects of motivation in the relationship between human values and service quality. To examine the fundamental relationships among human values, motivation, and service quality, a Structural Equation Model (SEM) with a full mediation model was adopted. The model was designed and subsequently analyzed by utilizing the Partial Least Squares (PLS) procedure on data collected from a survey that yielded 936 usable questionnaires. The survey was sent to all 117 branches of two local commercial banks (CIMB and Maybank) operating in Kuala Lumpur, Malaysia. Both banks ranked the highest in terms of asset size and market capitalization. The mediating role of motivation was examined in the relationship between four dimensions of human values and bank service quality, whereby human values initiate service quality. The results support the notion that employee motivation fully mediates the relationship between self-enhancement values and service quality in commercial banks. These results demonstrate the unpredictable role of the interaction structures of human values on bank service quality.

Definition of a Computing Independent Model and Rules for Transformation Focused on the Model-View-Controller Architecture

This paper presents a model-oriented development approach to software development in the Model-View-Controller (MVC) architectural standard. This approach aims to expose a process of extractions of information from the models, in which through rules and syntax defined in this work, assists in the design of the initial model and its future conversions. The proposed paper presents a syntax based on the natural language, according to the rules agreed in the classic grammar of the Portuguese language, added to the rules of conversions generating models that follow the norms of the Object Management Group (OMG) and the Meta-Object Facility MOF.

A Compact Wearable Slot Antenna for LTE and WLAN Applications

In this paper, a compact wide-band, ultra-thin and flexible slot antenna intended for wearable applications is presented. The presented antenna is designed to provide Wireless Local Area Network (WLAN) and Long Term Evolution (LTE) connectivity. The presented design exhibits a relatively wide bandwidth (1600-3500 MHz below -6 dB impedance bandwidth limit). The antenna is positioned on a 33 mm x 30 mm flexible substrate with a thickness of 50 µm. Antenna properties, such as the far-field radiation patterns, scattering parameter S11 are provided. The presented compact, thin and flexible design along with excellent radiation characteristics are deemed suitable for integration into flexible and wearable devices.

21st Century Biotechnological Research and Development Advancements for Industrial Development in India

Biotechnology is a discipline which explains the use of living organisms and systems to construct a product, or we can define it as an application or technology developed to use biological systems and organisms processes for a specific use. Particularly, it includes cells and its components use for new technologies and inventions. The tools developed can be further used in diverse fields such as agriculture, industry, research and hospitals etc. The 21st century has seen a drastic development and advancement in biotechnology in India. Significant increase in Government of India’s outlays for biotechnology over the past decade has been observed. A sectoral break up of biotechnology-based companies in India shows that most of the companies are agriculture-based companies having interests ranging from tissue culture to biopesticides. Major attention has been given by the companies in health related activities and in environmental biotechnology. The biopharmaceutical, which comprises of vaccines, diagnostic, and recombinant products is the most reliable and largest segment of the Indian Biotech industry. India has developed its vaccine markets and supplies them to various countries. Then there are the bio-services, which mainly comprise of contract researches and manufacturing services. India has made noticeable developments in the field of bio industries including manufacturing of enzymes, biofuels and biopolymers. Biotechnology is also playing a crucial and significant role in the field of agriculture. Traditional methods have been replaced by new technologies that mainly focus on GM crops, marker assisted technologies and the use of biotechnological tools to improve the quality of fertilizers and soil. It may only be a small contributor but has shown to have huge potential for growth. Bioinformatics is a computational method which helps to store, manage, arrange and design tools to interpret the extensive data gathered through experimental trials, making it important in the design of drugs.

Designing and Evaluating Pedagogic Conversational Agents to Teach Children

In this paper, the possibility of children studying by using an interactive learning technology called Pedagogic Conversational Agent is presented. The main benefit is that the agent is able to adapt the dialogue to each student and to provide automatic feedback. Moreover, according to Math teachers, in many cases students are unable to solve the problems even knowing the procedure to solve them, because they do not understand what they have to do. The hypothesis is that if students are helped to understand what they have to solve, they will be able to do it. Taken that into account, we have started the development of Dr. Roland, an agent to help students understand Math problems following a User-Centered Design methodology. The use of this methodology is proposed, for the first time, to design pedagogic agents to teach any subject from Secondary down to Pre-Primary education. The reason behind proposing a methodology is that while working on this project, we noticed the lack of literature to design and evaluate agents. To cover this gap, we describe how User-Centered Design can be applied, and which usability techniques can be applied to evaluate the agent.

Modeling and System Identification of a Variable Excited Linear Direct Drive

Linear actuators are deployed in a wide range of applications. This paper presents the modeling and system identification of a variable excited linear direct drive (LDD). The LDD is designed based on linear hybrid stepper technology exhibiting the characteristic tooth structure of mover and stator. A three-phase topology provides the thrust force caused by alternating strengthening and weakening of the flux of the legs. To achieve best possible synchronous operation, the phases are commutated sinusoidal. Despite the fact that these LDDs provide high dynamics and drive forces, noise emission limits their operation in calm workspaces. To overcome this drawback an additional excitation of the magnetic circuit is introduced to LDD using additional enabling coils instead of permanent magnets. The new degree of freedom can be used to reduce force variations and related noise by varying the excitation flux that is usually generated by permanent magnets. Hence, an identified simulation model is necessary to analyze the effects of this modification. Especially the force variations must be modeled well in order to reduce them sufficiently. The model can be divided into three parts: the current dynamics, the mechanics and the force functions. These subsystems are described with differential equations or nonlinear analytic functions, respectively. Ordinary nonlinear differential equations are derived and transformed into state space representation. Experiments have been carried out on a test rig to identify the system parameters of the complete model. Static and dynamic simulation based optimizations are utilized for identification. The results are verified in time and frequency domain. Finally, the identified model provides a basis for later design of control strategies to reduce existing force variations.

Radial Basis Surrogate Model Integrated to Evolutionary Algorithm for Solving Computation Intensive Black-Box Problems

For design optimization with high-dimensional expensive problems, an effective and efficient optimization methodology is desired. This work proposes a series of modification to the Differential Evolution (DE) algorithm for solving computation Intensive Black-Box Problems. The proposed methodology is called Radial Basis Meta-Model Algorithm Assisted Differential Evolutionary (RBF-DE), which is a global optimization algorithm based on the meta-modeling techniques. A meta-modeling assisted DE is proposed to solve computationally expensive optimization problems. The Radial Basis Function (RBF) model is used as a surrogate model to approximate the expensive objective function, while DE employs a mechanism to dynamically select the best performing combination of parameters such as differential rate, cross over probability, and population size. The proposed algorithm is tested on benchmark functions and real life practical applications and problems. The test results demonstrate that the proposed algorithm is promising and performs well compared to other optimization algorithms. The proposed algorithm is capable of converging to acceptable and good solutions in terms of accuracy, number of evaluations, and time needed to converge.

Comparative Studies of the Effects of Microstructures on the Corrosion Behavior of Micro-Alloyed Steels in Unbuffered 3.5 Wt% NaCl Saturated with CO2

Corrosion problem which exists in every stage of oil and gas production has been a great challenge to the operators in the industry. The conventional carbon steel with all its inherent advantages has been adjudged susceptible to the aggressive corrosion environment of oilfield. This has aroused increased interest in the use of micro alloyed steels for oil and gas production and transportation. The corrosion behavior of three commercially supplied micro alloyed steels designated as A, B, and C have been investigated with API 5L X65 as reference samples. Electrochemical corrosion tests were conducted in an unbuffered 3.5 wt% NaCl solution saturated with CO2 at 30 0C for 24 hours. Pre-corrosion analyses revealed that samples A, B and X65 consist of ferrite-pearlite microstructures but with different grain sizes, shapes and distribution whereas sample C has bainitic microstructure with dispersed acicular ferrites. The results of the electrochemical corrosion tests showed that within the experimental conditions, the corrosion rate of the samples can be ranked as CR(A)< CR(X65)< CR(B)< CR(C). These results are attributed to difference in microstructures of the samples as depicted by ASTM grain size number in accordance with ASTM E112-12 Standard and ferrite-pearlite volume fractions determined by ImageJ Fiji grain size analysis software.

Theoretical Investigation on the Dynamic Characteristics of One Degree of Freedom Vibration System Equipped with Inerter of Variable Inertance

In this paper, a theoretical investigation on the dynamic characteristics of one degree of freedom vibration system equipped with inerter of variable inertance, is presented. Differential equation of movement was solved under proper initial conditions in the case of free undamped/damped vibration, considered in the absence/presence of the inerter in the mechanical system. Influence of inertance on the amplitude of vibration, phase angle, natural frequency, damping ratio, and logarithmic decrement was clarified. It was mainly found that the inerter decreases the natural frequency of the undamped system and also of the damped system if the damping ratio is below 0.707. On the other hand, the inerter increases the natural frequency of the damped system if the damping ratio exceeds 0.707. Results obtained in this work are useful for the adequate design of inerters.

The Role of Chemokine Family, CXCL-10 Urine as a Marker Diagnosis of Active Lung Tuberculosis in HIV/AIDS Patients

Human Immunodeficiency Virus (HIV) pandemic increased significantly worldwide. The rise in cases of HIV/AIDS was also followed by an increase in the incidence of opportunistic infection, with tuberculosis being the most opportunistic infection found in HIV/AIDS and the main cause of mortality in HIV/AIDS patients. Diagnosis of tuberculosis in HIV/AIDS patients is often difficult because of the uncommon symptom in HIV/AIDS patients compared to those without the disease. Thus, diagnostic tools are required that are more effective and efficient to diagnose tuberculosis in HIV/AIDS. CXCL-10/IP-10 is a chemokine that binds to the CXCR3 receptor found in HIV/AIDS patients with a weakened immune system. Tuberculosis infection in HIV/AIDS activates chemokine IP-10 in urine, which is used as a marker for diagnosis of infection. The aim of this study was to prove whether IP-10 urine can be a biomarker diagnosis of active lung tuberculosis in HIV-AIDS patients. Design of this study is a cross sectional study involving HIV/AIDS patients with lung tuberculosis as the subject of this study. Forty-seven HIV/AIDS patients with tuberculosis based on clinical and biochemical laboratory were asked to collect urine samples and IP-10/CXCL-10 urine being measured using ELISA method with 18 healthy human urine samples as control. Forty-seven patients diagnosed as HIV/AIDS were included as a subject of this study. HIV/AIDS were more common in male than in women with the percentage in male 85.1% vs. 14.5% of women. In this study, most diagnosed patients were aged 31-40 years old, followed by those 21-30 years, and > 40 years old, with one case diagnosed at age less than 20 years of age. From the result of the urine IP-10 using ELISA method, there was significant increase of the mean value of IP-10 urine in patients with TB-HIV/AIDS co-infection compared to the healthy control with mean 61.05 pg/mL ± 78.01 pg/mL vs. mean 17.2 pg/mL. Based on this research, there was significant increase of urine IP-10/CXCL-10 in active lung tuberculosis with HIV/AIDS compared to the healthy control. From this finding, it is necessary to conduct further research into whether urine IP-10/CXCL-10 plays a significant role in TB-HIV/AIDS co-infection, which can also be used as a biomarker in the early diagnosis of TB-HIV.

Artificial Neural Network Model Based Setup Period Estimation for Polymer Cutting

The paper presents the results and industrial applications in the production setup period estimation based on industrial data inherited from the field of polymer cutting. The literature of polymer cutting is very limited considering the number of publications. The first polymer cutting machine is known since the second half of the 20th century; however, the production of polymer parts with this kind of technology is still a challenging research topic. The products of the applying industrial partner must met high technical requirements, as they are used in medical, measurement instrumentation and painting industry branches. Typically, 20% of these parts are new work, which means every five years almost the entire product portfolio is replaced in their low series manufacturing environment. Consequently, it requires a flexible production system, where the estimation of the frequent setup periods' lengths is one of the key success factors. In the investigation, several (input) parameters have been studied and grouped to create an adequate training information set for an artificial neural network as a base for the estimation of the individual setup periods. In the first group, product information is collected such as the product name and number of items. The second group contains material data like material type and colour. In the third group, surface quality and tolerance information are collected including the finest surface and tightest (or narrowest) tolerance. The fourth group contains the setup data like machine type and work shift. One source of these parameters is the Manufacturing Execution System (MES) but some data were also collected from Computer Aided Design (CAD) drawings. The number of the applied tools is one of the key factors on which the industrial partners’ estimations were based previously. The artificial neural network model was trained on several thousands of real industrial data. The mean estimation accuracy of the setup periods' lengths was improved by 30%, and in the same time the deviation of the prognosis was also improved by 50%. Furthermore, an investigation on the mentioned parameter groups considering the manufacturing order was also researched. The paper also highlights the manufacturing introduction experiences and further improvements of the proposed methods, both on the shop floor and on the quotation preparation fields. Every week more than 100 real industrial setup events are given and the related data are collected.

Basic Research on Applying Temporary Work Engineering at the Design Phase

The application of constructability is increasingly required not only in the construction phase but also in the whole project stage. In particular, the proper application of construction experience and knowledge during the design phase enables the minimization of inefficiencies such as design changes and improvements in constructability during the construction phase. In order to apply knowledge effectively, engineering technology efforts should be implemented with design progress. Among many engineering technologies, engineering for temporary works, including facilities, equipment, and other related construction methods, is important to improve constructability. Therefore, as basic research, this study investigates the applicability of temporary work engineering during the design phase in the building construction industry. As a result, application of temporary work engineering has a greater impact on construction cost reduction and constructability improvement. In contrast to the existing design-bid-build method, the turn-key and CM (construct management) procurement methods currently being implemented in Korea are expected to have a significant impact on the direction of temporary work engineering. To introduce temporary work engineering, expert/professional organization training is first required, and a lack of client awareness should be preferentially improved. The results of this study are expected to be useful as reference material for the development of more effective temporary work engineering tasks and work processes in the future.

Numerical Analysis and Design of Dielectric to Plasmonic Waveguides Couplers

In this work, efficient directional coupler composed of dielectric waveguides and metallic film has been analyzed in details by simulations using finite element method (FEM). The structure consists of a step-index fiber with dielectric core, silica cladding, and a metal nanowire parallel to the core. The results show that an efficient conversion of optical dielectric modes to long range plasmonic is possible. Low insertion losses in conjunction with short coupling length and a broadband operation can be achieved under certain conditions. This kind of couplers has potential applications for the design of photonic integrated circuits for signal routing between dielectric/plasmonic waveguides, sensing, lithography, and optical storage systems. A high efficient focusing of light in a very small region can be obtained.