Numerical Analysis and Design of Dielectric to Plasmonic Waveguides Couplers

In this work, efficient directional coupler composed of
dielectric waveguides and metallic film has been analyzed in details
by simulations using finite element method (FEM). The structure
consists of a step-index fiber with dielectric core, silica cladding, and
a metal nanowire parallel to the core. The results show that an
efficient conversion of optical dielectric modes to long range
plasmonic is possible. Low insertion losses in conjunction with short
coupling length and a broadband operation can be achieved under
certain conditions. This kind of couplers has potential applications for
the design of photonic integrated circuits for signal routing between
dielectric/plasmonic waveguides, sensing, lithography, and optical
storage systems. A high efficient focusing of light in a very small
region can be obtained.

[1] J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi,
“Guiding of a one-dimensional optical beam with nanometer diameter”,
Optics Letters, 1997, Vol. 22, No.7.
[2] X. He, L. Yang and T. Yang, “Optical nanofocusing by tapering coupled
photonic-plasmonic waveguides”, Optics Express, 2011.
[3] Y. Luo, M. Chamanzar, A. Apuzzo, R. Salas-Montiel, K. N. Nguyen, S.
Blaize and A, Adibi, “On-Chip Hybrid Photonic−Plasmonic Light
Concentrator for Nanofocusing in an Integrated Silicon Photonics
Platform”, Nano Letters, 2015.
[4] T. Wieduwilt, A. Tuniz, S. Linzen, S. Goerke1, J. Dellith, U. Hübner
and M. A. Schmidt, “Ultrathin niobium nanofilms on fiber optical tapers
– a new route towards low-loss hybrid plasmonic modes”, Scientific
Reports, 2015.
[5] R. Tellez-Limon, B. Bahari, L. Hsu, J. H. Park, A. Kodigala and B.
Kanté, “Integrated metaphotonics: symmetries and confined excitation
of LSP resonances in a single metallic nanoparticle”, Optics Express,
[6] A. Marini, M. Conforti, G. Della Valle, H. W. Lee, Tr. X. Tran, W.
Chang, M. A. Schmidt, S. Longhi, P. St. J. Russell and F. Biancalana,
"Ultrafast nonlinear dynamics of surface plasmon polaritons in gold
nanowires due to the intrinsic nonlinearity of metals", New Journal of
Physics, 2013.
[7] B. Desiatov, I. Goykhman and U. Levy, “Plasmonic nanofocusing of
light in an integrated silicon photonics platform”, Optic Express, 2011.
[8] A. Boltasseva , V. S. Volkov, R. B. Nielsen, E. Moreno, S. G. Rodrigo
and S. I. Bozhevolnyi, ” Triangular metal wedges for subwavelength
plasmon-polariton guiding at telecom wavelengths”
[9] H. Gao, J.-C. Yang, J. Y. Lin, A. D. Stuparu, M. H. Lee, M. Mrksich
and T. W. Odom, “Nano Lett.”, 2010.
[10] M. Alavirad, L. Roy and P. Berini, “IEEE J. Sel. Top. Quantum
Electron”, 2014.
[11] M. Hentschel, T. Utikal, H. Giessen and M. Lippitz, “Nano Lett.”, 2012. [12] H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic
devices”, Nat. Mater, 2010.
[13] A. Tuniz and M. A. Schmidt, “Broadband efficient directional coupling
to short-range plasmons: towards hybrid fiber nanotips”, Optics express,
[14] A. Rakic, A. Djurisic, J. Elazar, and M. Majewski, “Optical properties of
metallic films for vertical-cavity optoelectronic devices”, Appl. Opt. 37,
[15] R. Bratifich, “Fabricação e caracterização de nanoestruturas metálicas
para aplicações em dispositivos plasmônicos”, Master Degree Theses,
Instituto de Física de São Carlos, Universidade de São Paulo, 2015.