A Compact Wearable Slot Antenna for LTE and WLAN Applications

In this paper, a compact wide-band, ultra-thin and flexible slot antenna intended for wearable applications is presented. The presented antenna is designed to provide Wireless Local Area Network (WLAN) and Long Term Evolution (LTE) connectivity. The presented design exhibits a relatively wide bandwidth (1600-3500 MHz below -6 dB impedance bandwidth limit). The antenna is positioned on a 33 mm x 30 mm flexible substrate with a thickness of 50 µm. Antenna properties, such as the far-field radiation patterns, scattering parameter S11 are provided. The presented compact, thin and flexible design along with excellent radiation characteristics are deemed suitable for integration into flexible and wearable devices.

Authors:



References:
[1] H. Ko, R. Kapadia, K. Takei, T. Takahashi, X. Zhang, and A. Javey, “Multifunctional, flexible electronic systems based on engineered nanostructured materials”, Nanotechnology, Vol. 23, pp.11, 2012.
[2] H.R. Khaleel, H. Al-Rizzo, D. Rucker, "Compact Polyimide-Based
[3] Antennas for Flexible Displays," IEEE Display Technology, Journal of, vol.8, no.2, pp.91-97, Feb. 2012.
[4] Y. Huang, J. Chen, Z. Yin, Y. Xiong, "Roll-to-Roll Processing of Flexible Heterogeneous Electronics With Low Interfacial Residual Stress," Components, Packaging and Manufacturing Technology, IEEE Transactions.
[5] L. Yang, L. Martin, D. Staiculescu, C.P. Wong, M. Tentzeris, “Design and Development of Compact Conformal RFID Antennas Utilizing Novel Flexible Magnetic Composite Materials for Wearable RF and Biomedical Applications ”IEEE Ant. & Prop. Int. Symposium, pp. 1-4, Sep. 2008.
[6] C. Y. Tsai and K. L. Wong, "Combined-type dual-wideband and triple-wideband LTE antennas for the tablet device," Antennas and Propagation (APCAP), 2015 IEEE 4th Asia-Pacific Conference on, Kuta, 2015, pp. 411-412.
[7] H. R. Khaleel, H. Al-Rizzo, D. Rucker, Y. Al-Naiemy, "Flexible printed monopole antennas for WLAN applications", IEEE International Symposium on Antennas and Propagation (APSURSI), pp.1334-1337, 3-8 July 2011.
[8] Anagnostou, D.E.; Gheethan, A.A.; Amert, A.K.; Whites, K.W., "A Direct-Write Printed Antenna on Paper-Based Organic Substrate for Flexible Displays and WLAN Applications," Display Technology, Journal of, vol.6, no.11, pp.558-564, Nov. 2010.
[9] C. Hertleer, H. Rogier, L. Vallozzi, L. Van Langenhove, "A Textile Antenna for Off-Body Communication Integrated Into Protective Clothing for Firefighters," Antennas and Propagation, IEEE Transactions on, vol.57, no.4, pp.919-925, April 2009.
[10] H. R. Khaleel, H. Al-Rizzo, D. Rucker, S. Mohan, "A Compact Polyimide-Based UWB Antenna for Flexible Electronics," Antennas and Wireless Propagation Letters, IEEE , vol.11, no., pp.564-567, 2012.
[11] H. Raad, A. Abbosh, H. Al-Rizzo, D. Rucker, "Flexible and Compact AMC Based Antenna for Telemedicine Applications," Antennas and Propagation, IEEE Transactions on, vol.PP, no.99, pp.1.
[12] Du Pont Dupont Kapton Polyimide specification sheet, www2.dupont.com/kapton Accessed on 07/06/2016
[13] http/www.cst.com – Accessed on 07/19/2016
[14] Haga, N.; Saito, K.; Takahashi, M.; Ito, K.; "Characteristics of Cavity Slot Antenna for Body-Area Networks," Antennas and Propagation, IEEE Transactions on, vol.57, no.4, pp.837-843, April 2009.
[15] Khaleel, H.R.; Al-Rizzo, H.M.; Rucker, D.G.; Elwi, T.A., "Wearable Yagi microstrip antenna for telemedicine applications," Radio and Wireless Symposium (RWS), 2010, IEEE, vol., no., pp.280, 283, 10-14 Jan. 2010.
[16] W. S. T. Rowe and R. B. Waterhouse, “Reduction of backward radiation for CPW fed aperture stacked patch antennas on small ground planes,” IEEE Trans. Antennas Propag., vol. 51, no. 6, Jun. 2003.
[17] C. Caloz, H. Okabe, T. Iwai, and T. Itoh, “A simple and accurate model for microstrip structures with slotted ground plane,” IEEE Microwave Wireless Comp. Lett., vol. 14, no. 4, pp. 133–135, Apr. 2004.
[18] M. M. Bait-Suwailam, M. S. Boybay, and O. M. Ramahi, “Electromagnetic coupling reduction in highprofile monopole antennas using single-negative magnetic metamaterials for mimo applications,” IEEE Trans. Antennas Propag., vol. 58, no. 9, pp. 2894–2902, Sept. 2010.
[19] A. Rida, L. Yang, R. Vyas, S. Basat, S.K. Bhattacharya and M. M. Tentzeris, “Novel manufacturing processes for ultra-low-cost paper-based RFID tags with enhanced wireless intelligence,” Elec. Comp. &Tech. Conf., pp. 773-776, Jun. 2007.
[20] S. Merilampi, L. Ukkonen, L. Sydanheimo, P. Ruuskanen, and M. Kivikoski, “Analysis of silver ink bow-tie RFID tag antennas printed on paper substrates,” Hindawi Publishing Corp. Int. Journal of Ant. & Prop. vol. 2007, pp. 1-9, Oct. 2007.
[21] V. Pynttari, R. Makinen, J. Lilja, V. Pekkanen, P. Mansikkamaki and M. Kivikoski, “Significance of conductivity and thickness of thin inkjet printed microstrip lines,” 12th IEEE Workshop on ,Signal Propagation on Interconnects, pp. 1-4 , July 2008.
[22] Y. Ouyang, D. Love, w. Chapel, “Body-Worn Distributed MIMO System” IEEE Trans. On Vehicular Tech., vol. 58, No. 4, pp. 16-22, May, 2009.
[23] B. Sanz-Izquierdo; J.A. Miller; J.C. Batchelor; M.I. Sobhy, Dual-band wearable metallic button antennas and transmission in body area networks, IET Microwaves, Antennas & Propagation, Volume 4, Issue 2, February 2010, p. 182 – 190.
[24] H.-D. Chen, J.-S. Chen, and Y.-T. Cheng, “Modified invertedL monopole antenna for 2.4/5 GHz dual-band operations,” IEE Electron. Lett., vol. 39, no. 22, Oct. 2003.
[25] J. W. Wu, H. M. Hsiao, J. H. Lu, and S. H. Chang, “Dual broadband design of rectangular slot antenna for 2.4 and 5 GHz wireless,” IEE Electron. Lett., vol. 40, no. 23, Nov. 2004.
[26] P. Salonen, Jaehoon Kim, Y. Rahmat-Samii, “Dual-band E-shaped patch wearable textile antenna,” IEEE Antennas and Propagation Society Symposium, vol. 1 , pp. 466– 469, 2004.
[27] D. Anagnostou, A. Gheethan, A. Amert, K. Whites, "A Direct-Write Printed Antenna on Paper-Based Organic Substrate for Flexible Displays and WLAN Applications," Display Technology, Journal of , vol.6, no.11, pp.558-564, Nov. 2010.
[28] H. B. Lim, D. Baumann, and E.-P. Li, “A human body model for efficient numerical characterization of UWB signal propagation in wireless body area networks,” IEEE Trans. Biomed. Eng., vol. 58, no. 3, pp. 689–697, Mar. 2011.