Discontinuous Galerkin Method for 1D Shallow Water Flow with Water Surface Slope Limiter

A water surface slope limiting scheme is tested and compared with the water depth slope limiter for the solution of one dimensional shallow water equations with bottom slope source term. Numerical schemes based on the total variation diminishing Runge- Kutta discontinuous Galerkin finite element method with slope limiter schemes based on water surface slope and water depth are used to solve one-dimensional shallow water equations. For each slope limiter, three different Riemann solvers based on HLL, LF, and Roe flux functions are used. The proposed water surface based slope limiter scheme is easy to implement and shows better conservation property compared to the slope limiter based on water depth. Of the three flux functions, the Roe approximation provides the best results while the LF function proves to be least suitable when used with either slope limiter scheme.

Challenges of Irrigation Water Supply in Croplands of Arid Regions and their Environmental Consequences – A Case Study in the Dez and Moghan Command Areas of Iran

Renewable water resources are crucial production variables in arid and semi-arid regions where intensive agriculture is practiced to meet ever-increasing demand for food and fiber. This is crucial for the Dez and Moghan command areas where water delivery problems and adverse environmental issues are widespread. This paper aims to identify major problems areas using on-farm surveys of 200 farmers, agricultural extensionists and water suppliers which was complemented by secondary data and field observations during 2010- 2011 cultivating season. The SPSS package was used to analyze and synthesis data. Results indicated inappropriate canal operations in both schemes, though there was no unanimity about the underlying causes. Inequitable and inflexible distribution was found to be rooted in deficient hydraulic structures particularly in the main and secondary canals. The inadequacy and inflexibility of water scheduling regime was the underlying causes of recurring pest and disease spread which often led to the decline of crop yield and quality, although these were not disputed, the water suppliers were not prepared to link with the deficiencies in the operation of the main and secondary canals. They rather attributed these to the prevailing salinity; alkalinity, water table fluctuations and leaching of the valuable agro-chemical inputs from the plants- route zone with farreaching consequences. Examples of these include the pollution of ground and surface resources due to over-irrigation at the farm level which falls under the growers- own responsibility. Poor irrigation efficiency and adverse environmental problems were attributed to deficient and outdated farming practices that were in turn rooted in poor extension programs and irrational water charges.

Heat Flux Reduction Research in Hypersonic Flow with Opposing Jet

A CFD study on heat flux reduction in hypersonic flow with opposing jet has been conducted. Flowfield parameters, reattachment point position, surface pressure distributions and heat flux distributions are obtained and validated with experiments. The physical mechanism of heat reduction has been analyzed. When the opposing jet blows, the freestream is blocked off, flows to the edges and not interacts with the surface to form aerodynamic heating. At the same time, the jet flows back to form cool recirculation region, which reduces the difference in temperature between the surface and the nearby gas, and then reduces the heat flux. As the pressure ratio increases, the interface between jet and freestream is gradually pushed away from the surface. Larger the total pressure ratio is, lower the heat flux is. To study the effect of the intensity of opposing jet more reasonably, a new parameter RPA has been introduced by combining the flux and the total pressure ratio. The study shows that the same shock wave position and total heat load can be obtained with the same RPA with different fluxes and the total pressures, which means the new parameter could stand for the intensity of opposing jet and could be used to analyze the influence of opposing jet on flow field and aerodynamic heating.

Problems of Innovative Economy: Forming of«Innovative Society» And Innovative Receptivity

Today many countries have the ambitious purposes of long-term and continuous development: constant growth of competitiveness, maintenance of a high standard of living of the population, leadership in the world market. One of the best possible ways of achievement of these purposes is a transition of the countries to innovative economy. The paper presents the analyses of problems of forming of innovative receptivity to innovations and creation of «innovative society». Creation of an innovative culture in a society and increase of the level of prestige of innovative activity are the best ways of developing of innovative processes. The base of the analysis is a comparing of Russia and different developed countries according to the level of some indictors of innovative activity.1

Development a New Model of EEVC/WG17 Lower Legform for Pedestrian Safety

Development, calibration and validation of a threedimensional model of the Legform impactor for pedestrian crash with bumper are presented. Lower limb injury is becoming an increasingly important concern in vehicle safety for both occupants and pedestrians. In order to prevent lower extremity injuries to a pedestrian when struck by a car, it is important to elucidate the loadings from car front structures on the lower extremities and the injury mechanism caused by these loadings. An impact test procedure with a legform addressing lower limb injuries in car pedestrian accidents has been proposed by EEVC/WG17. In this study a modified legform impactor is introduced and validated against EEVC/WG17 criteria. The finite element model of this legform is developed using LS-DYNA software. Total mass of legform impactor is 13.4 kg.Technical specifications including the mass and location of the center of gravity and moment of inertia about a horizontal axis through the respective centre of gravity in femur and tibia are determined. The obtained results of legform impactor static and dynamic tests are as specified in the EEVC/WG17.

A New Hybrid Optimization Method for Optimum Distribution Capacitor Planning

This work presents a new algorithm based on a combination of fuzzy (FUZ), Dynamic Programming (DP), and Genetic Algorithm (GA) approach for capacitor allocation in distribution feeders. The problem formulation considers two distinct objectives related to total cost of power loss and total cost of capacitors including the purchase and installation costs. The novel formulation is a multi-objective and non-differentiable optimization problem. The proposed method of this article uses fuzzy reasoning for sitting of capacitors in radial distribution feeders, DP for sizing and finally GA for finding the optimum shape of membership functions which are used in fuzzy reasoning stage. The proposed method has been implemented in a software package and its effectiveness has been verified through a 9-bus radial distribution feeder for the sake of conclusions supports. A comparison has been done among the proposed method of this paper and similar methods in other research works that shows the effectiveness of the proposed method of this paper for solving optimum capacitor planning problem.

Gain Tuning Fuzzy Controller for an Optical Disk Drive

Since the driving speed and control accuracy of commercial optical disk are increasing significantly, it needs an efficient controller to monitor the track seeking and following operations of the servo system for achieving the desired data extracting response. The nonlinear behaviors of the actuator and servo system of the optical disk drive will influence the laser spot positioning. Here, the model-free fuzzy control scheme is employed to design the track seeking servo controller for a d.c. motor driving optical disk drive system. In addition, the sliding model control strategy is introduced into the fuzzy control structure to construct a 1-D adaptive fuzzy rule intelligent controller for simplifying the implementation problem and improving the control performance. The experimental results show that the steady state error of the track seeking by using this fuzzy controller can maintain within the track width (1.6 μm ). It can be used in the track seeking and track following servo control operations.

Glutamic Acid Production from Potato by Brevibacterium linens

In this study, the possibility of using potato as a substrate for glutamic acid production by Brevibacterium linens was investigated. For preparation of fermentation medium, potato was hydrolyzed by hydrochloridric acid. The medium contained potato hydrolysate, tween 80, mineral solution, glucose, and potassium hydrogen phosphate. The initial pH of the medium was adjusted to 7-7.5. For achieving the optimum time with maximum yield, the beakers containing the medium and the inoculums were incubated in a rotary water bath flask shaker for one to five days. Thin layer choromatography was used for quantitative and qualitative assay of the glutamic acid produced. The results revealed that as fermentation time increased, pH of the fermentation medium significantly decreased (P

A Methodological Approach for Detecting Burst Noise in the Time Domain

The burst noise is a kind of noises that are destructive and frequently found in semiconductor devices and ICs, yet detecting and removing the noise has proved challenging for IC designers or users. According to the properties of burst noise, a methodological approach is presented (proposed) in the paper, by which the burst noise can be analysed and detected in time domain. In this paper, principles and properties of burst noise are expounded first, Afterwards, feasibility (viable) of burst noise detection by means of wavelet transform in the time domain is corroborated in the paper, and the multi-resolution characters of Gaussian noise, burst noise and blurred burst noise are discussed in details by computer emulation. Furthermore, the practical method to decide parameters of wavelet transform is acquired through a great deal of experiment and data statistics. The methodology may yield an expectation in a wide variety of applications.

Cement Mortar Lining as a Potential Source of Water Contamination

Several different cements have been tested to evaluate their potential to leach calcium, chromium and aluminum ions in soft water environment. The research allows comparing some different cements in order to the potential risk of water contamination. This can be done only in the same environment. To reach the results in reasonable short time intervals and to make heavy metals measurements with high accuracy, demineralized water was used. In this case the conditions of experiments are far away from the water supply practice, but short time experiments and measurably high concentrations of elements in the water solution are an important advantage. Moreover leaching mechanisms can be recognized, our experiments reported here refer to this kind of cements evaluation.

Effect of Natural Fibres Inclusion in Clay Bricks: Physico-Mechanical Properties

In spite of the advent of new materials, clay bricks remain, arguably, the most popular construction materials today. Nevertheless the low cost and versatility of clay bricks cannot always be associated with high environmental and sustainable values, especially in terms of raw material sources and manufacturing processes. At the same time, the worldwide agricultural footprint is fast growing, with vast agricultural land cultivation and active expansion of the agro-based industry. The resulting large quantities of agricultural wastes, unfortunately, are not always well managed or utilised. These wastes can be recycled, such as by retrieving fibres from disposed leaves and fruit bunches, and then incorporated in brick-making. This way the clay bricks are made a 'greener' building material and the discarded natural wastes can be reutilised, avoiding otherwise wasteful landfill and harmful open incineration. This study examined the physical and mechanical properties of clay bricks made by adding two natural fibres to a clay-water mixture, with baked and non-baked conditions. The fibres were sourced from pineapple leaves (PF) and oil palm fruit bunch (OF), and added within the range of 0.25-0.75 %. Cement was added as a binder to the mixture at 5-15 %. Although the two fibres had different effects on the bricks produced, cement appeared to dominate the compressive strength. The non-baked bricks disintegrated when submerged in water, while the baked ones displayed cement-dependent characteristics in water-absorption and density changes. Interestingly, further increase in fibre content did not cause significant density decrease in both the baked and non-baked bricks.

The Pack-Bed Sphere Liquid Porous Burner

The combustion of liquid fuel in the porous burner (PB) was experimented to investigate evaporation mechanism and combustion behavior. The diesel oil was used as fuel and the pebbles carefully chosen in the same size like the solid sphere homogeneously was adopted as the porous media. Two structures of the liquid porous burner, i.e. the PB without and with installation of porous emitter (PE), were performed. PE was installed by lower than PB with distance of 20 cm. The pebbles having porosity (φ) of 0.45 and 0.52 were, respectively, used in PB and PE. The fuel was supplied dropwise from the top through the PB and the combustion was occurred between PB and PE. Axial profiles of temperature along the burner length were measured to clarify the evaporation and combustion phenomena. The pollutant emission characteristics were monitored at the burner exit. From the experiment, it was found that the temperature profiles of both structures decreased with the three ways swirling air flows (QA) increasing. On the other hand, the temperature profiles increased with fuel heat input (QF). Obviously, the profile of the porous burner installed with PE was higher than that of the porous burner without PE

Work Structuring and the Feasibility of Application to Construction Projects in Vietnam

Design should be viewed concurrently by three ways as transformation, flow and value generation. An innovative approach to solve design – related problems is described as the integrated product - process design. As a foundation for a formal framework consisting of organizing principles and techniques, Work Structuring has been developed to guide efforts in the integration that enhances the development of operation and process design in alignment with product design. Vietnam construction projects are facing many delays, and cost overruns caused mostly by design related problems. A better design management that integrates product and process design could resolve these problems. A questionnaire survey and in – depth interviews were used to investigate the feasibility of applying Work Structuring to construction projects in Vietnam. The purpose of this paper is to present the research results and to illustrate the possible problems and potential solutions when Work Structuring is implemented to construction projects in Vietnam.

Prestressed Concrete Girder Bridges Using Large 0.7 Inch Strands

The National Bridge Inventory (NBI) includes more than 600,000 bridges within the United States of America. Prestressed concrete girder bridges represent one of the most widely used bridge systems. The majority of these girder bridges were constructed using 0.5 and 0.6 inch diameter strands. The main impediments to using larger strand diameters are: 1) lack of prestress bed capacities, 2) lack of structural knowledge regarding the transfer and development length of larger strands, and 3) the possibility of developing wider end zone cracks upon strand release. This paper presents a study about using 0.7 inch strands in girder fabrication. Transfer and development length were evaluated, and girders were fabricated using 0.7 inch strands at different spacings. Results showed that 0.7 inch strands can be used at 2.0 inch spacing without violating the AASHTO LRFD Specifications, while attaining superior performance in shear and flexure.

Least Square-SVM Detector for Wireless BPSK in Multi-Environmental Noise

Support Vector Machine (SVM) is a statistical learning tool developed to a more complex concept of structural risk minimization (SRM). In this paper, SVM is applied to signal detection in communication systems in the presence of channel noise in various environments in the form of Rayleigh fading, additive white Gaussian background noise (AWGN), and interference noise generalized as additive color Gaussian noise (ACGN). The structure and performance of SVM in terms of the bit error rate (BER) metric is derived and simulated for these advanced stochastic noise models and the computational complexity of the implementation, in terms of average computational time per bit, is also presented. The performance of SVM is then compared to conventional binary signaling optimal model-based detector driven by binary phase shift keying (BPSK) modulation. We show that the SVM performance is superior to that of conventional matched filter-, innovation filter-, and Wiener filter-driven detectors, even in the presence of random Doppler carrier deviation, especially for low SNR (signal-to-noise ratio) ranges. For large SNR, the performance of the SVM was similar to that of the classical detectors. However, the convergence between SVM and maximum likelihood detection occurred at a higher SNR as the noise environment became more hostile.

Change Detection and Non Stationary Signals Tracking by Adaptive Filtering

In this paper we consider the problem of change detection and non stationary signals tracking. Using parametric estimation of signals based on least square lattice adaptive filters we consider for change detection statistical parametric methods using likelihood ratio and hypothesis tests. In order to track signals dynamics, we introduce a compensation procedure in the adaptive estimation. This will improve the adaptive estimation performances and fasten it-s convergence after changes detection.

A Study of Under Actuator Dynamic System by Comparing between Minimum Energy and Minimum Jerk Problems

This paper deals with under actuator dynamic systems such as spring-mass-damper system when the number of control variable is less than the number of state variable. In order to apply optimal control, the controllability must be checked. There are many objective functions to be selected as the goal of the optimal control such as minimum energy, maximum energy and minimum jerk. As the objective function is the first priority, if one like to have the second goal to be applied; however, it could not fit in the objective function format and also avoiding the vector cost for the objective, this paper will illustrate the problem of under actuator dynamic systems with the easiest to deal with comparing between minimum energy and minimum jerk.

Biosignal Measurement System Based On Ultra-Wide Band Human Body Communication

A wrist-band type biosignal measurement system and its data transfer through human body communication (HBC) were investigated. An HBC method based on pulses of ultra-wide band instead of using frequency or amplitude modulations was studied and implemented since the system became very compact and it was more suited for personal or mobile health monitoring. Our system measured photo-plethysmogram (PPG) and measured PPG signals were transmitted through a finger to a monitoring PC system. The device was compact and low-power consuming. HBC communication has very strongsecurity measures since it does not use wireless network.Furthermore, biosignal monitoring system becomes handy because it does not need to have wire connections.

3D Network-on-Chip with on-Chip DRAM: An Empirical Analysis for Future Chip Multiprocessor

With the increasing number of on-chip components and the critical requirement for processing power, Chip Multiprocessor (CMP) has gained wide acceptance in both academia and industry during the last decade. However, the conventional bus-based onchip communication schemes suffer from very high communication delay and low scalability in large scale systems. Network-on-Chip (NoC) has been proposed to solve the bottleneck of parallel onchip communications by applying different network topologies which separate the communication phase from the computation phase. Observing that the memory bandwidth of the communication between on-chip components and off-chip memory has become a critical problem even in NoC based systems, in this paper, we propose a novel 3D NoC with on-chip Dynamic Random Access Memory (DRAM) in which different layers are dedicated to different functionalities such as processors, cache or memory. Results show that, by using our proposed architecture, average link utilization has reduced by 10.25% for SPLASH-2 workloads. Our proposed design costs 1.12% less execution cycles than the traditional design on average.

A Robust Approach to the Load Frequency Control Problem with Speed Regulation Uncertainty

The load frequency control problem of power systems has attracted a lot of attention from engineers and researchers over the years. Increasing and quickly changing load demand, coupled with the inclusion of more generators with high variability (solar and wind power generators) on the network are making power systems more difficult to regulate. Frequency changes are unavoidable but regulatory authorities require that these changes remain within a certain bound. Engineers are required to perform the tricky task of adjusting the control system to maintain the frequency within tolerated bounds. It is well known that to minimize frequency variations, a large proportional feedback gain (speed regulation constant) is desirable. However, this improvement in performance using proportional feedback comes about at the expense of a reduced stability margin and also allows some steady-state error. A conventional PI controller is then included as a secondary control loop to drive the steadystate error to zero. In this paper, we propose a robust controller to replace the conventional PI controller which guarantees performance and stability of the power system over the range of variation of the speed regulation constant. Simulation results are shown to validate the superiority of the proposed approach on a simple single-area power system model.