Identifying E-Learning Components at North-West University, Mafikeng Campus

Educational institutions are under pressure from their competitors. Regulators and community groups need educational institutions to adopt appropriate business and organizational practices. Globally, educational institutions are now using e-learning as the best teaching and learning approach. E-learning is becoming the center of attention to the learning institutions, educational systems and software inventors. North-West University (NWU) is currently using eFundi, a Learning Management System (LMS). LMS are all information systems and procedures that adds value to students learning and support the learning material in text or any multimedia files. With various e-learning tools, students would be able to access all the materials related to the course in electronic copies. The study was tasked with identifying the e-learning components at the NWU, Mafikeng campus. Quantitative research methodology was considered in data collection and descriptive statistics for data analysis. The Activity Theory (AT) was used as a theory to guide the study. AT outlines the limitations amongst e-learning at the macro-organizational level (plan, guiding principle, campus-wide solutions) and micro-organization (daily functioning practice, collaborative transformation, specific adaptation). On a technological environment, AT gives people an opportunity to change from concentrating on computers as an area of concern but also understand that technology is part of human activities. The findings have identified the university’s current IT tools and knowledge on e-learning elements. It was recommended that university should consider buying computer resources that consumes less power and practice e-learning effectively.

Technological Development and Implementation of a Robotic Arm Motioned by Programmable Logic Controller

The robot manipulator is an equipment that stands out for two reasons: Firstly because of its characteristics of movement and reprogramming, resembling the arm; secondly, by adding several areas of knowledge of science and engineering. The present work shows the development of the prototype of a robotic manipulator driven by a Programmable Logic Controller (PLC), having two degrees of freedom, which allows the movement and displacement of mechanical parts, tools, and objects in general of small size, through an electronic system. The aim is to study direct and inverse kinematics of the robotic manipulator to describe the translation and rotation between two adjacent links of the robot through the Denavit-Hartenberg parameters. Currently, due to the many resources that microcomputer systems offer us, robotics is going through a period of continuous growth that will allow, in a short time, the development of intelligent robots with the capacity to perform operations that require flexibility, speed and precision.

Combinatory Nutrition Supplementation: A Case of Synergy for Increasing Calcium Bioavailability

This paper presents an overview of how calcium interacts with the various essential nutrients within an environment of cellular and hormonal interactions for the purpose of increasing bioavailability to the human body. One example of such interactions can be illustrated with calcium homeostasis. This paper gives an in-depth discussion on the possible interactive permutations with various nutrients and factors leading to the promotion of calcium bioavailability to the body. The review hopes to provide further insights into how calcium supplement formulations can be improved to better influence its bioavailability in the human body.

Fruit Growing in Romania and Its Role for Rural Communities’ Development

The importance of fruit trees and bushes growing for Romania is due the concordance that exists between the different ecological conditions in natural basins, and the requirements of different species and varieties. There are, in Romania, natural areas dedicated to the main trees species: plum, apple, pear, cherry, sour cherry, finding optimal conditions for harnessing the potential of fruitfulness, making fruit quality both in terms of ratio commercial, and content in active principles. The share of fruits crops in the world economy of agricultural production is due primarily to the role of fruits in nourishment for human, and in the prevention and combating of diseases, in increasing the national income of cultivator countries and to improve comfort for human life. For Romania, the perspectives of the sector are positive, and are due to European funding opportunities, which provide farmers a specialized program that meets the needs of development and modernization of fruit growing industry, cultivation technology and equipment, organization and grouping of producers, creating storage facilities, conditioning, marketing and the joint use of fresh fruit. This paper shows the evolution of fruit growing, in Romania compared to other states. The document presents the current situation of the main tree species both in terms of surface but also of the productions and the role that this activity may have for the development of rural communities.

Modeling and System Identification of a Variable Excited Linear Direct Drive

Linear actuators are deployed in a wide range of applications. This paper presents the modeling and system identification of a variable excited linear direct drive (LDD). The LDD is designed based on linear hybrid stepper technology exhibiting the characteristic tooth structure of mover and stator. A three-phase topology provides the thrust force caused by alternating strengthening and weakening of the flux of the legs. To achieve best possible synchronous operation, the phases are commutated sinusoidal. Despite the fact that these LDDs provide high dynamics and drive forces, noise emission limits their operation in calm workspaces. To overcome this drawback an additional excitation of the magnetic circuit is introduced to LDD using additional enabling coils instead of permanent magnets. The new degree of freedom can be used to reduce force variations and related noise by varying the excitation flux that is usually generated by permanent magnets. Hence, an identified simulation model is necessary to analyze the effects of this modification. Especially the force variations must be modeled well in order to reduce them sufficiently. The model can be divided into three parts: the current dynamics, the mechanics and the force functions. These subsystems are described with differential equations or nonlinear analytic functions, respectively. Ordinary nonlinear differential equations are derived and transformed into state space representation. Experiments have been carried out on a test rig to identify the system parameters of the complete model. Static and dynamic simulation based optimizations are utilized for identification. The results are verified in time and frequency domain. Finally, the identified model provides a basis for later design of control strategies to reduce existing force variations.

Co-Articulation between Consonant and Vowel in Cantonese Syllables

This study investigates C-V and V-C co-articulation in Cantonese monosyllables of the CV, VC or CVC structure, with C = one of the three stop consonants [p, t, k] and V = one of the three corner vowels [i, a, u]. Five repetitions of each test syllable on a randomized list were elicited from Cantonese young adult speakers in their early-20s. A research tool, EMA AG500, was used to record the synchronized audio signals and articulatory data at three different locations of the tongue – tongue tip, tongue middle, and tongue back – and the positions of the upper and lower lips during the test syllables. The main findings based on the articulatory data collected from two male Cantonese speakers are as follows: (i) For the syllable-initial [p-], strong co-articulation is observed when [p-] preceding the high vowel [i] or [u], but not the low vowel [a]. As for the syllable-final [-p], it is strongly co-articulated with the preceding vowel, even when the vowel is [a]. (ii) The co-articulation between the initial [t-] and the following vowel of any type is weak. In the syllable-final position, the degree of co-articulatory resistance of [-t] is also large when following the vowel [u], but [-t] is largely co-articulated with the preceding vowel when the vowel is [i] or [a]. (iii) The strength of co-articulation differs when the initial [k-] precedes the different types of vowel. A stronger co-articulation between [k-] and [i] than between [k-] and [u], and the strength of co-articulation is much reduced between [k-] and [a]. However, in the syllable-final position, there is strong co-articulation between [-k] and the preceding vowel [a]. (iv) Among the three types of stop consonants in the syllable-initial position, the decreasing degree of co-articulatory resistance (CR) is [t-] > [k-] > [p-], and the degree of CR is reduced during all three types of stop in the syllable-final position. In general, the data on co-articulation between consonant and vowel in the Cantonese monosyllables are similar to those in other languages reported in previous studies.

Experimental Study of Unconfined and Confined Isothermal Swirling Jets

A 3C-2D PIV technique was applied to investigate the swirling flow generated by an axial plus tangential type swirl generator. This work is focused on the near-exit region of an isothermal swirling jet to characterize the effect of swirl on the flow field and to identify the large coherent structures both in unconfined and confined conditions for geometrical swirl number, Sg = 4.6. Effects of the Reynolds number on the flow structure were also studied. The experimental results show significant effects of the confinement on the mean velocity fields and its fluctuations. The size of the recirculation zone was significantly enlarged upon confinement compared to the free swirling jet. Increasing in the Reynolds number further enhanced the recirculation zone. The frequency characteristics have been measured with a capacitive microphone which indicates the presence of periodic oscillation related to the existence of precessing vortex core, PVC. Proper orthogonal decomposition of the jet velocity field was carried out, enabling the identification of coherent structures. The time coefficients of the first two most energetic POD modes were used to reconstruct the phase-averaged velocity field of the oscillatory motion in the swirling flow. The instantaneous minima of negative swirl strength values calculated from the instantaneous velocity field revealed the presence of two helical structures located in the inner and outer shear layers and this structure fade out at an axial location of approximately z/D = 1.5 for unconfined case and z/D = 1.2 for confined case. By phase averaging the instantaneous swirling strength maps, the 3D helical vortex structure was reconstructed.

Comparative Studies of the Effects of Microstructures on the Corrosion Behavior of Micro-Alloyed Steels in Unbuffered 3.5 Wt% NaCl Saturated with CO2

Corrosion problem which exists in every stage of oil and gas production has been a great challenge to the operators in the industry. The conventional carbon steel with all its inherent advantages has been adjudged susceptible to the aggressive corrosion environment of oilfield. This has aroused increased interest in the use of micro alloyed steels for oil and gas production and transportation. The corrosion behavior of three commercially supplied micro alloyed steels designated as A, B, and C have been investigated with API 5L X65 as reference samples. Electrochemical corrosion tests were conducted in an unbuffered 3.5 wt% NaCl solution saturated with CO2 at 30 0C for 24 hours. Pre-corrosion analyses revealed that samples A, B and X65 consist of ferrite-pearlite microstructures but with different grain sizes, shapes and distribution whereas sample C has bainitic microstructure with dispersed acicular ferrites. The results of the electrochemical corrosion tests showed that within the experimental conditions, the corrosion rate of the samples can be ranked as CR(A)< CR(X65)< CR(B)< CR(C). These results are attributed to difference in microstructures of the samples as depicted by ASTM grain size number in accordance with ASTM E112-12 Standard and ferrite-pearlite volume fractions determined by ImageJ Fiji grain size analysis software.

The Effect of Physical Exercise to Level of Nuclear Factor Kappa B on Serum, Macrophages and Myocytes

Background: Physical exercise induces a pattern of hormonal and immunological responses that prevent endothelial dysfunction by maintaining the availability of nitric oxide (NO). Regular and moderate exercise stimulates NO release, that can be considered as protective factor of cardiovascular diseases, while strenuous exercise induces increased levels in a number of pro-inflammatory and anti-inflammatory cytokines. Pro-inflammatory cytokines tumor necrosis factor-α (TNF-α) triggers endothelial activation which results in an increased vascular permeability. Nuclear gene factor kappa B (NF-κB) activates biological effect of TNF-α. Aim of Study: To determine the effect of physical exercise on the endothelial and skeletal muscle, we measured the level of NF-κB on rats’ serum, macrophages, and myocytes after strenuous physical exercise. Methods: 30 male Rattus norvegicus in the age of eight weeks were randomly divided into five groups (each containing six), and there were treated groups (T) and control group (C). The treated groups obtain strenuous physical exercise by ran on treadmill at 32 m/minutes for 1 hour or until exhaustion. Blood samples, myocytes of gastrocnemius muscle, and intraperitoneal macrophages were collected sequentially. There were investigated immediately, 2 hours, 6 hours, and 24 hours (T1, T2, T3, and T4) after sacrifice. The levels of NF-κB were measured by ELISA methods. Results: From our study, we found that the levels of NF-κB on myocytes in treated group from which its specimen was taken immediately (T1), 2 hours after treadmill (T2), and 6 hours after treadmill (T3) were significantly higher than control group (p0.05). Also on macrophages, NF-κB in treated groups T1, T2, and T3 was significantly higher than control group (p0.05). The level of serum NF-κB was not significantly different between treatment group as well as compared to control group (p>0.05). Serum NF-κB was significantly higher than the level on macrophages and myocytes (p

Optimal Tuning of Linear Quadratic Regulator Controller Using a Particle Swarm Optimization for Two-Rotor Aerodynamical System

This paper presents an optimal state feedback controller based on Linear Quadratic Regulator (LQR) for a two-rotor aero-dynamical system (TRAS). TRAS is a highly nonlinear multi-input multi-output (MIMO) system with two degrees of freedom and cross coupling. There are two parameters that define the behavior of LQR controller: state weighting matrix and control weighting matrix. The two parameters influence the performance of LQR. Particle Swarm Optimization (PSO) is proposed to optimally tune weighting matrices of LQR. The major concern of using LQR controller is to stabilize the TRAS by making the beam move quickly and accurately for tracking a trajectory or to reach a desired altitude. The simulation results were carried out in MATLAB/Simulink. The system is decoupled into two single-input single-output (SISO) systems. Comparing the performance of the optimized proportional, integral and derivative (PID) controller provided by INTECO, results depict that LQR controller gives a better performance in terms of both transient and steady state responses when PSO is performed.

Speeding up Nonlinear Time History Analysis of Base-Isolated Structures Using a Nonlinear Exponential Model

The nonlinear time history analysis of seismically base-isolated structures can require a significant computational effort when the behavior of each seismic isolator is predicted by adopting the widely used differential equation Bouc-Wen model. In this paper, a nonlinear exponential model, able to simulate the response of seismic isolation bearings within a relatively large displacements range, is described and adopted in order to reduce the numerical computations and speed up the nonlinear dynamic analysis. Compared to the Bouc-Wen model, the proposed one does not require the numerical solution of a nonlinear differential equation for each time step of the analysis. The seismic response of a 3d base-isolated structure with a lead rubber bearing system subjected to harmonic earthquake excitation is simulated by modeling each isolator using the proposed analytical model. The comparison of the numerical results and computational time with those obtained by modeling the lead rubber bearings using the Bouc-Wen model demonstrates the good accuracy of the proposed model and its capability to reduce significantly the computational effort of the analysis.

The Role of Chemokine Family, CXCL-10 Urine as a Marker Diagnosis of Active Lung Tuberculosis in HIV/AIDS Patients

Human Immunodeficiency Virus (HIV) pandemic increased significantly worldwide. The rise in cases of HIV/AIDS was also followed by an increase in the incidence of opportunistic infection, with tuberculosis being the most opportunistic infection found in HIV/AIDS and the main cause of mortality in HIV/AIDS patients. Diagnosis of tuberculosis in HIV/AIDS patients is often difficult because of the uncommon symptom in HIV/AIDS patients compared to those without the disease. Thus, diagnostic tools are required that are more effective and efficient to diagnose tuberculosis in HIV/AIDS. CXCL-10/IP-10 is a chemokine that binds to the CXCR3 receptor found in HIV/AIDS patients with a weakened immune system. Tuberculosis infection in HIV/AIDS activates chemokine IP-10 in urine, which is used as a marker for diagnosis of infection. The aim of this study was to prove whether IP-10 urine can be a biomarker diagnosis of active lung tuberculosis in HIV-AIDS patients. Design of this study is a cross sectional study involving HIV/AIDS patients with lung tuberculosis as the subject of this study. Forty-seven HIV/AIDS patients with tuberculosis based on clinical and biochemical laboratory were asked to collect urine samples and IP-10/CXCL-10 urine being measured using ELISA method with 18 healthy human urine samples as control. Forty-seven patients diagnosed as HIV/AIDS were included as a subject of this study. HIV/AIDS were more common in male than in women with the percentage in male 85.1% vs. 14.5% of women. In this study, most diagnosed patients were aged 31-40 years old, followed by those 21-30 years, and > 40 years old, with one case diagnosed at age less than 20 years of age. From the result of the urine IP-10 using ELISA method, there was significant increase of the mean value of IP-10 urine in patients with TB-HIV/AIDS co-infection compared to the healthy control with mean 61.05 pg/mL ± 78.01 pg/mL vs. mean 17.2 pg/mL. Based on this research, there was significant increase of urine IP-10/CXCL-10 in active lung tuberculosis with HIV/AIDS compared to the healthy control. From this finding, it is necessary to conduct further research into whether urine IP-10/CXCL-10 plays a significant role in TB-HIV/AIDS co-infection, which can also be used as a biomarker in the early diagnosis of TB-HIV.

Teaching for Change: Instructional Support in a Bilingual Setting

The goal of this paper is to provide educators an overview of international practices supporting young learners, arming us with adequate information to lead effective change. We will report on research and observations of Service Learning Projects conducted by one South Texas University. The intent of the paper is also to provide readers an overview of service learning in the preparation of teacher candidates pursuing a Bachelor of Science in Elementary Education. The objective of noting the efficiency and effectiveness of programs leading to literacy and oral fluency in a native language and second language will be discussed. This paper also highlights experiential learning for academic credit that combines community service with student learning. Six weeks of visits to a variety of community sites, making personal observations with faculty members, conducting extensive interviews with parents and key personnel at all sites will be discussed. The culminating Service Learning Expo will be reported as well.

Role of Pro-Inflammatory and Regulatory Cytokines in Pathogenesis of Graves’ Disease in Association with Autoantibody Thyroid and Regulatory FoxP3 T-Cells

Background: Graves’ disease (GD) is an autoimmune thyroid disease. Imbalance of Th1/Th2 cells and T-regulatory (Treg)/Th17 cells was thought to play pivotal role in the pathogenesis of GD. Treg FoxP3 produced TGF-β to maintain regulatory function, and Th17 cells produced IL-17 as cytokines that were thought in mediating several autoimmune diseases. The aim of this study is to assess the role of IL-17 and TGF-β in the pathogenesis of GD and to investigate its correlation with Thyroid Stimulating Hormone Receptor Antibody (TRAb) and Treg FoxP3 expression. Method: 30 GD patients and 27 age and sex-matched controls were enrolled in this study. Diagnosis of GD was based on clinical and biochemical of GD. Serum IL-17, TGF-β, TRAb, and FoxP3 were measured by enzyme-linked immunosorbent assay (ELISA). Data were analyzed by using SPSS 21.0 (SPSS Inc.). Spearman rank correlation test was used for assessment of correlation. The statistical significance was accepted as P

Neuron-Based Control Mechanisms for a Robotic Arm and Hand

A robotic arm and hand controlled by simulated neurons is presented. The robot makes use of a biological neuron simulator using a point neural model. The neurons and synapses are organised to create a finite state automaton including neural inputs from sensors, and outputs to effectors. The robot performs a simple pick-and-place task. This work is a proof of concept study for a longer term approach. It is hoped that further work will lead to more effective and flexible robots. As another benefit, it is hoped that further work will also lead to a better understanding of human and other animal neural processing, particularly for physical motion. This is a multidisciplinary approach combining cognitive neuroscience, robotics, and psychology.

An Advanced Exponential Model for Seismic Isolators Having Hardening or Softening Behavior at Large Displacements

In this paper, an advanced Nonlinear Exponential Model (NEM), able to simulate the uniaxial dynamic behavior of seismic isolators having a continuously decreasing tangent stiffness with increasing displacement in the relatively large displacements range and a hardening or softening behavior at large displacements, is presented. The mathematical model is validated by comparing the experimental force-displacement hysteresis loops obtained during cyclic tests, conducted on a helical wire rope isolator and a recycled rubber-fiber reinforced bearing, with those predicted analytically. Good agreement between the experimental and simulated results shows that the proposed model can be an effective numerical tool to predict the force-displacement relationship of seismic isolation devices within the large displacements range. Compared to the widely used Bouc-Wen model, unable to simulate the response of seismic isolators at large displacements, the proposed one allows to avoid the numerical solution of a first order nonlinear ordinary differential equation for each time step of a nonlinear time history analysis, thus reducing the computation effort. Furthermore, the proposed model can simulate the smooth transition of the hysteresis loops from small to large displacements by adopting only one set of five parameters determined from the experimental hysteresis loops having the largest amplitude.

Influence of Displacement Amplitude and Vertical Load on the Horizontal Dynamic and Static Behavior of Helical Wire Rope Isolators

In this paper, the results of experimental tests performed on a Helical Wire Rope Isolator (HWRI) are presented in order to describe the dynamic and static behavior of the selected metal device in three different displacements ranges, namely small, relatively large, and large displacements ranges, without and under the effect of a vertical load. A testing machine, allowing to apply horizontal displacement or load histories to the tested bearing with a constant vertical load, has been adopted to perform the dynamic and static tests. According to the experimental results, the dynamic behavior of the tested device depends on the applied displacement amplitude. Indeed, the HWRI displays a softening and a hardening stiffness at small and relatively large displacements, respectively, and a stronger nonlinear stiffening behavior at large displacements. Furthermore, the experimental tests reveal that the application of a vertical load allows to have a more flexible device with higher damping properties and that the applied vertical load affects much less the dynamic response of the metal device at large displacements. Finally, a decrease in the static to dynamic effective stiffness ratio with increasing displacement amplitude has been observed.

Simulation of Dynamic Behavior of Seismic Isolators Using a Parallel Elasto-Plastic Model

In this paper, a one-dimensional (1d) Parallel Elasto- Plastic Model (PEPM), able to simulate the uniaxial dynamic behavior of seismic isolators having a continuously decreasing tangent stiffness with increasing displacement, is presented. The parallel modeling concept is applied to discretize the continuously decreasing tangent stiffness function, thus allowing to simulate the dynamic behavior of seismic isolation bearings by putting linear elastic and nonlinear elastic-perfectly plastic elements in parallel. The mathematical model has been validated by comparing the experimental force-displacement hysteresis loops, obtained testing a helical wire rope isolator and a recycled rubber-fiber reinforced bearing, with those predicted numerically. Good agreement between the simulated and experimental results shows that the proposed model can be an effective numerical tool to predict the forcedisplacement relationship of seismic isolators within relatively large displacements. Compared to the widely used Bouc-Wen model, the proposed one allows to avoid the numerical solution of a first order ordinary nonlinear differential equation for each time step of a nonlinear time history analysis, thus reducing the computation effort, and requires the evaluation of only three model parameters from experimental tests, namely the initial tangent stiffness, the asymptotic tangent stiffness, and a parameter defining the transition from the initial to the asymptotic tangent stiffness.

Nonlinear Dynamic Analysis of Base-Isolated Structures Using a Partitioned Solution Approach and an Exponential Model

The solution of the nonlinear dynamic equilibrium equations of base-isolated structures adopting a conventional monolithic solution approach, i.e. an implicit single-step time integration method employed with an iteration procedure, and the use of existing nonlinear analytical models, such as differential equation models, to simulate the dynamic behavior of seismic isolators can require a significant computational effort. In order to reduce numerical computations, a partitioned solution method and a one dimensional nonlinear analytical model are presented in this paper. A partitioned solution approach can be easily applied to base-isolated structures in which the base isolation system is much more flexible than the superstructure. Thus, in this work, the explicit conditionally stable central difference method is used to evaluate the base isolation system nonlinear response and the implicit unconditionally stable Newmark’s constant average acceleration method is adopted to predict the superstructure linear response with the benefit in avoiding iterations in each time step of a nonlinear dynamic analysis. The proposed mathematical model is able to simulate the dynamic behavior of seismic isolators without requiring the solution of a nonlinear differential equation, as in the case of widely used differential equation model. The proposed mixed explicit-implicit time integration method and nonlinear exponential model are adopted to analyze a three dimensional seismically isolated structure with a lead rubber bearing system subjected to earthquake excitation. The numerical results show the good accuracy and the significant computational efficiency of the proposed solution approach and analytical model compared to the conventional solution method and mathematical model adopted in this work. Furthermore, the low stiffness value of the base isolation system with lead rubber bearings allows to have a critical time step considerably larger than the imposed ground acceleration time step, thus avoiding stability problems in the proposed mixed method.

First-Principles Density Functional Study of Nitrogen-Doped P-Type ZnO

We present a theoretical investigation on the structural, electronic properties and vibrational mode of nitrogen impurities in ZnO. The atomic structures, formation and transition energies and vibrational modes of (NO3)i interstitial or NO4 substituting on an oxygen site ZnO were computed using ab initio total energy methods. Based on Local density functional theory, our calculations are in agreement with one interpretation of bound-excition photoluminescence for N-doped ZnO. First-principles calculations show that (NO3)i defects interstitial or NO4 substituting on an Oxygen site in ZnO are important suitable impurity for p-type doping in ZnO. However, many experimental efforts have not resulted in reproducible p-type material with N2 and N2O doping. by means of first-principle pseudo-potential calculation we find that the use of NO or NO2 with O gas might help the experimental research to resolve the challenge of achieving p-type ZnO.