PIELG: A Protein Interaction Extraction Systemusing a Link Grammar Parser from Biomedical Abstracts

Due to the ever growing amount of publications about protein-protein interactions, information extraction from text is increasingly recognized as one of crucial technologies in bioinformatics. This paper presents a Protein Interaction Extraction System using a Link Grammar Parser from biomedical abstracts (PIELG). PIELG uses linkage given by the Link Grammar Parser to start a case based analysis of contents of various syntactic roles as well as their linguistically significant and meaningful combinations. The system uses phrasal-prepositional verbs patterns to overcome preposition combinations problems. The recall and precision are 74.4% and 62.65%, respectively. Experimental evaluations with two other state-of-the-art extraction systems indicate that PIELG system achieves better performance. For further evaluation, the system is augmented with a graphical package (Cytoscape) for extracting protein interaction information from sequence databases. The result shows that the performance is remarkably promising.

Myotonometry Method for Assessment Muscle Performance

The aim of this paper is to present the role of myotonometry in assessment muscle viscoelasticity by measurement of force index (IF) and stiffness (S) at thigh muscle groups. The results are used for improve the muscle training. The method is based on mechanic impulse on the muscle group, that involve a muscle response like acceleration, speed and amplitude curves. From these we have information about elasticity, stiffness beginning from mechanic oscillations of muscle tissue. Using this method offer the possibility for monitoring the muscle capacity for produce mechanic energy, that allows a efficiency of movement with a minimal tissue deformation.

Broad-Band Chiral Reflectors based on Nano-Structured Biological Materials

In this work we study the reflection of circularly polarised light from a nano-structured biological material found in the exocuticle of scarabus beetles. This material is made of a stack of ultra-thin (~5 nm) uniaxial layers arranged in a left-handed helicoidal stack, which resonantly reflects circularly polarized light. A chirp in the layer thickness combined with a finite absorption coefficient produce a broad smooth reflectance spectrum. By comparing model calculations and electron microscopy with measured spectra we can explain our observations and quantify most relevant structural parameters.

Fractal Dimension of Breast Cancer Cell Migration in a Wound Healing Assay

Migration in breast cancer cell wound healing assay had been studied using image fractal dimension analysis. The migration of MDA-MB-231 cells (highly motile) in a wound healing assay was captured using time-lapse phase contrast video microscopy and compared to MDA-MB-468 cell migration (moderately motile). The Higuchi fractal method was used to compute the fractal dimension of the image intensity fluctuation along a single pixel width region parallel to the wound. The near-wound region fractal dimension was found to decrease three times faster in the MDA-MB- 231 cells initially as compared to the less cancerous MDA-MB-468 cells. The inner region fractal dimension was found to be fairly constant for both cell types in time and suggests a wound influence range of about 15 cell layer. The box-counting fractal dimension method was also used to study region of interest (ROI). The MDAMB- 468 ROI area fractal dimension was found to decrease continuously up to 7 hours. The MDA-MB-231 ROI area fractal dimension was found to increase and is consistent with the behavior of a HGF-treated MDA-MB-231 wound healing assay posted in the public domain. A fractal dimension based capacity index has been formulated to quantify the invasiveness of the MDA-MB-231 cells in the perpendicular-to-wound direction. Our results suggest that image intensity fluctuation fractal dimension analysis can be used as a tool to quantify cell migration in terms of cancer severity and treatment responses.

Effects of Li2O Thickness and Moisture Content on LiH Hydrolysis Kinetics in Slightly Humidified Argon

The hydrolysis kinetics of polycrystalline lithium hydride (LiH) in argon at various low humidities was measured by gravimetry and Raman spectroscopy with ambient water concentration ranging from 200 to 1200 ppm. The results showed that LiH hydrolysis curve revealed a paralinear shape, which was attributed to two different reaction stages that forming different products as explained by the 'Layer Diffusion Control' model. Based on the model, a novel two-stage rate equation for LiH hydrolysis reactions was developed and used to fit the experimental data for determination of Li2O steady thickness Hs and the ultimate hydrolysis rate vs. The fitted data presented a rise of Hs as ambient water concentration cw increased. However, in spite of the negative effect imposed by Hs increasing, the upward trend of vs remained, which implied that water concentration, rather than Li2O thickness, played a predominant role in LiH hydrolysis kinetics. In addition, the proportional relationship between vsHs and cw predicted by rate equation and confirmed by gravimetric data validated the model in such conditions.

A Comparative Study of Electrical Transport Phenomena in Ultrathin vs. Nanoscale SOI MOSFETs Devices

Ultrathin (UTD) and Nanoscale (NSD) SOI-MOSFET devices, sharing a similar W/L but with a channel thickness of 46nm and 1.6nm respectively, were fabricated using a selective “gate recessed” process on the same silicon wafer. The electrical transport characterization at room temperature has shown a large difference between the two kinds of devices and has been interpreted in terms of a huge unexpected series resistance. Electrical characteristics of the Nanoscale device, taken in the linear region, can be analytically derived from the ultrathin device ones. A comparison of the structure and composition of the layers, using advanced techniques such as Focused Ion Beam (FIB) and High Resolution TEM (HRTEM) coupled with Energy Dispersive X-ray Spectroscopy (EDS), contributes an explanation as to the difference of transport between the devices.

Data Mining Techniques in Computer-Aided Diagnosis: Non-Invasive Cancer Detection

Diagnosis can be achieved by building a model of a certain organ under surveillance and comparing it with the real time physiological measurements taken from the patient. This paper deals with the presentation of the benefits of using Data Mining techniques in the computer-aided diagnosis (CAD), focusing on the cancer detection, in order to help doctors to make optimal decisions quickly and accurately. In the field of the noninvasive diagnosis techniques, the endoscopic ultrasound elastography (EUSE) is a recent elasticity imaging technique, allowing characterizing the difference between malignant and benign tumors. Digitalizing and summarizing the main EUSE sample movies features in a vector form concern with the use of the exploratory data analysis (EDA). Neural networks are then trained on the corresponding EUSE sample movies vector input in such a way that these intelligent systems are able to offer a very precise and objective diagnosis, discriminating between benign and malignant tumors. A concrete application of these Data Mining techniques illustrates the suitability and the reliability of this methodology in CAD.

A Game Design Framework for Vocational Education

Serious games have proven to be a useful instrument to engage learners and increase motivation. Nevertheless, a broadly accepted, practical instructional design approach to serious games does not exist. In this paper, we introduce the use of an instructional design model that has not been applied to serious games yet, and has some advantages compared to other design approaches. We present the case of mechanics mechatronics education to illustrate the close match with timing and role of knowledge and information that the instructional design model prescribes and how this has been translated to a rigidly structured game design. The structured approach answers the learning needs of applicable knowledge within the target group. It combines advantages of simulations with strengths of entertainment games to foster learner-s motivation in the best possible way. A prototype of the game will be evaluated along a well-respected evaluation method within an advanced test setting including test and control group.

Effects of Allelochemical Gramine on Metabolic Activity and Ultrastructure of Cyanobacterium Microcystis aeruginosa

In this study, inhibition of Microcystis aeruginosa by antialgal alleochemical gramine, was studied by analyzing algal metabolic activity (represented by esterase and total dehydrogenase activities) and cell ultrastructure (showing morphological and ultrastructure alterations using transmission electron microscopy and DNA ladder analysis). After gramine exposure, esterase and total dehydrogenase activities were increased firstly but decreased later. In contrast with the controls, the cells exposed to gramine showed apparent ultrastructure alterations with thylakoids in breakage, phycobilins in decrease, lipid and cyanophycin granules abundant firstly but dissolved afterwards, DNA in fragementation. The occurrence of increase of metabolic activity and specific granules reflected that the resistance of cellular response to gramine was initiated. DNA fragementation associated with the increase of metabolic activity and specific granules hinted that gramine caused M. aeruginosa cells to initiate some morphotype of programmed cell death.

Adsorption Capacity of Chitosan Beads in Toxic Solutions

The efficiency of chitosan beads processed from 4 marine animal shells; white leg shrimp (Litopenaeus vannamei), mud crab (Scylla sp.), horseshoe crab (Carcinoscorpius rotundicauda), and cuttlefish bone (Sepia sp.), for the adsorption experiments of ammonia and formaldehyde were investigated. The porosities of chitosan from the shells looked like beads were distinctly examined under SEM. The original pores of those shells on the surface areas compose of evenly fine pores. The shell beads of cuttlefish bone and horseshoe crab show the larger probably even porosity, while on those white leg shrimp and mud crab contain various large and fine pores. The best adsorption at pH 9 in 18 mg/l ammonia at 2 hours yield on cuttlefish bone, horseshoe crab, mud crab and white leg shrimp with the average percent of 59.12, 51.45, 45.66 and 43.52, respectively. Within 30 minutes the formaldehyde absorbers (at pH 5 in 8 μg/ml) revealed 46.27, 26.56, and 18.04 percent capacities in cuttlefish bone, mud crab and white leg shrimp beads; while 22.44 percent in the horseshoe crab at pH 7. The adsorption capacities and the amounts of beads showed a positive correlation. The adsorption capacity relationship between pH and the gas concentrations were affected by these qualities of chitosan beads.

Starch Based Biofilms for Green Packaging

This current research focused on development of degradable starch based packaging film with enhanced mechanical properties. A series of low density polyethylene (LDPE)/tapioca starch compounds with various tapioca starch contents were prepared by twin screw extrusion with the addition of maleic anhydride grafted polyethylene as compatibilizer. Palm cooking oil was used as processing aid to ease the blown film process, thus, degradable film can be processed via conventional blown film machine. Studies on their characteristics, mechanical properties and biodegradation were carried out by Fourier Transform Infrared (FTIR) spectroscopy and optical properties, tensile test and exposure to fungi environment respectively. The presence of high starch contents had an adverse effect on the tensile properties of LDPE/tapioca starch blends. However, the addition of compatibilizer to the blends improved the interfacial adhesion between the two materials, hence, improved the tensile properties of the films. High content of starch amount also was found to increase the rate of biodegradability of LDPE/tapioca starch films. It can be proved by exposure of the film to fungi environment. A growth of microbes colony can be seen on the surface of LDPE/tapioca starch film indicates that the granular starch present on the surface of the polymer film is attacked by microorganisms, until most of it is assimilated as a carbon source.

The Effect of Dispersed MWCNTs Using SDBS Surfactant on Bacterial Growth

Carbon nanotubes (CNTs) are attractive because of their excellent chemical durability mechanical strength and electrical properties. Therefore there is interest in CNTs for not only electrical and mechanical application, but also biological and medical application. In this study, the dispersion power of surfactant-treated multiwalled carbon nanotubes (MWCNTs) and their effect on the antibacterial activity were examined. Surfactant was used sodium dodecyl-benzenesulfonate (SDBS). UV-vis absorbance and transmission electron microscopy(TEM) were used to characterize the dispersion of MWCNTs in the aqueous phase, showing that the surfactant molecules had been adsorbed onto the MWCNTs surface. The surfactant-treated MWCNTs exhibited antimicrobial activities to streptococcus mutans. The optical density growth curves and viable cell number determined by the plating method suggested that the antimicrobial activity of surfactant-treated MWCNTs was both concentration and treatment time-dependent.

Transimpedance Amplifier for Integrated 3D Ultrasound Biomicroscope Applications

This paper presents the design and implementation of a fully integrated transimpedance amplifier (TIA) as the analog frontend receiver for Capacitive Micromachined Ultrasound Transducers (CMUTs) for ultrasound biomicroscope imaging application. The amplifier is designed to amplify the received signals from 17.5MHz to 52.5MHz with a center frequency of 35MHz. The TIA was fabricated in GF 0.18μm 1P6M 30V high voltage process. The measurement results show that the designed amplifier can reach a transimpedance gain of 61.08dBΩ and operating frequency from 17.5MHz to 100MHz with 1VP-P output voltage under 6V power supply.

Numerical Study of Microscale Gas Flow-Separation Using Explicit Finite Volume Method

Pressure driven microscale gas flow-separation has been investigated by solving the compressible Navier-Stokes (NS) system of equations. A two dimensional explicit finite volume (FV) compressible flow solver has been developed using modified advection upwind splitting methods (AUSM+) with no-slip/first order Maxwell-s velocity slip conditions to predict the flowseparation behavior in microdimensions. The effects of scale-factor of the flow geometry and gas species on the microscale gas flowseparation have been studied in this work. The intensity of flowseparation gets reduced with the decrease in scale of the flow geometry. In reduced dimension, flow-separation may not at all be present under similar flow conditions compared to the larger flow geometry. The flow-separation patterns greatly depend on the properties of the medium under similar flow conditions.

An Iterative Updating Method for Damped Gyroscopic Systems

The problem of updating damped gyroscopic systems using measured modal data can be mathematically formulated as following two problems. Problem I: Given Ma ∈ Rn×n, Λ = diag{λ1, ··· , λp} ∈ Cp×p, X = [x1, ··· , xp] ∈ Cn×p, where p

Effect of Lime on the California Bearing Ratio Behaviour of Fly Ash - mine Overburden Mixes

Typically thermal power plants are located near to surface coal mines that produce huge amount of fly ash as a waste byproduct. Disposal of fly ash causes significant economic and environmental problems. Now-a-days, research is going on for bulk utilization of fly ash. In order to increase its percentage utilization, an investigation was carried out to evaluate its potential for haul road construction. This paper presents the laboratory California bearing ratio (CBR) tests and evaluates the effect of lime on CBR behavior of fly ash - mine overburden mixes. Tests were performed with different percentages of lime (2%, 3%, 6%, and 9%). The results show that the increase in bearing ratio of fly ash-overburden mixes was achieved by lime treatment. Scanning electron microscopy (SEM) analyses were conducted on 28 days cured specimens. The SEM study showed that the bearing ratio development is related to the microstructural development.

Energy Density Increasing in the Channel of Super-High Pressure Megaampere Discharge due to Resonance of Different Type Oscillations of the Channel

Discharges in hydrogen, ignited by wire explosion, with current amplitude up to 1.5 MA were investigated. Channel diameter oscillations were observed on the photostreaks. Voltage and current curves correlated with the photostreaks. At initial gas pressure of 5-35 MPa the oscillation period was proportional to square root of atomic number of the initiating wire material. These oscillations were associated with aligned magnetic and gas-kinetic pressures. At initial pressure of 80-160 MPa acoustic pressure fluctuations on the discharge chamber wall were increased up to 150 MPa and there were the growth of voltage fluctuations on the discharge gap up to 3 kV simultaneously with it. In some experiments it was observed abrupt increase in the oscillation amplitude, which can be caused by the resonance of the acoustic oscillations in discharge chamber volume and the oscillations connected with alignment of the gaskinetic pressure and the magnetic pressure, as far as frequencies of these oscillations are close to each other in accordance with the estimates and the experimental data. Resonance of different type oscillations can produce energy density increasing in the discharge channel. Thus, the appropriate initial conditions in the experiment allow to increase the energy density in the discharge channel

Combining Molecular Statics with Heat Transfer Finite Difference Method for Analysis of Nanoscale Orthogonal Cutting of Single-Crystal Silicon Temperature Field

This paper uses quasi-steady molecular statics model and diamond tool to carry out simulation temperature rise of nanoscale orthogonal cutting single-crystal silicon. It further qualitatively analyzes temperature field of silicon workpiece without considering heat transfer and considering heat transfer. This paper supposes that the temperature rise of workpiece is mainly caused by two heat sources: plastic deformation heat and friction heat. Then, this paper develops a theoretical model about production of the plastic deformation heat and friction heat during nanoscale orthogonal cutting. After the increased temperature produced by these two heat sources are added up, the acquired total temperature rise at each atom of the workpiece is substituted in heat transfer finite difference equation to carry out heat transfer and calculates the temperature field in each step and makes related analysis.

Bond Strength in Thermally Sprayed Gas Turbine Shafts

In this paper, the bond strength of thermal spray coatings in high speed shafts has been studied. The metallurgical and mechanical studies has been made on the coated samples and shaft using optical microscopy, scanning electron microscopy (SEM).

A Nonlinear ODE System for the Unsteady Hydrodynamic Force – A New Approach

We propose a reduced-ordermodel for the instantaneous hydrodynamic force on a cylinder. The model consists of a system of two ordinary differential equations (ODEs), which can be integrated in time to yield very accurate histories of the resultant force and its direction. In contrast to several existing models, the proposed model considers the actual (total) hydrodynamic force rather than its perpendicular or parallel projection (the lift and drag), and captures the complete force rather than the oscillatory part only. We study and provide descriptions of the relationship between the model parameters, evaluated utilizing results from numerical simulations, and the Reynolds number so that the model can be used at any arbitrary value within the considered range of 100 to 500 to provide accurate representation of the force without the need to perform timeconsuming simulations and solving the partial differential equations (PDEs) governing the flow field.