An Innovative Transient Free Adaptive SVC in Stepless Mode of Control

Electrical distribution systems are incurring large losses as the loads are wide spread, inadequate reactive power compensation facilities and their improper control. A comprehensive static VAR compensator consisting of capacitor bank in five binary sequential steps in conjunction with a thyristor controlled reactor of smallest step size is employed in the investigative work. The work deals with the performance evaluation through analytical studies and practical implementation on an existing system. A fast acting error adaptive controller is developed suitable both for contactor and thyristor switched capacitors. The switching operations achieved are transient free, practically no need to provide inrush current limiting reactors, TCR size minimum providing small percentages of nontriplen harmonics, facilitates stepless variation of reactive power depending on load requirement so as maintain power factor near unity always. It is elegant, closed loop microcontroller system having the features of self regulation in adaptive mode for automatic adjustment. It is successfully tested on a distribution transformer of three phase 50 Hz, Dy11, 11KV/440V, 125 KVA capacity and the functional feasibility and technical soundness are established. The controller developed is new, adaptable to both LT & HT systems and practically established to be giving reliable performance.

Evaluation of the Inhibitory Effect of Some Plant Crude Extracts Against Albugo Candida, the Causal Agent of White Rust

White rust, caused by Albugo candida, is the most destructive foliar diseases of persian cress, Lepidium sativum in Iran. Application of fungicide is the most common method for the disease control. However, regarding the problems created by synthetic pesticides application, environmentally safe methods are needed to replace chemical pesticides. In this study, the antifungal activity of plant natural extracts was investigated for their ability to inhibit zoospore release from sporangia of A. candida. The crude extract of 46 plants was obtained using methanol. The inhibitory effect of the extracts was examined by mixing the plant extracts with a zoosporangial suspension of A. candida (1×106 spore/ml) at three concentrations, 250, 100 and 50 ppm. The experiments were conducted in a completely randomized design, with three replicates. The results of the experiment showed that three out of 46 plants species, including, Rhus coriaria, Anagallis arvensis and Mespilus germanica were completely inhibit zoospore release from zoosporangia of Albugo candida at concentration of 50 ppm.

Rotor Bearing System Analysis Using the Transfer Matrix Method with Thickness Assumption of Disk and Bearing

There are lots of different ways to find the natural frequencies of a rotating system. One of the most effective methods which is used because of its precision and correctness is the application of the transfer matrix. By use of this method the entire continuous system is subdivided and the corresponding differential equation can be stated in matrix form. So to analyze shaft that is this paper issue the rotor is divided as several elements along the shaft which each one has its own mass and moment of inertia, which this work would create possibility of defining the named matrix. By Choosing more elements number, the size of matrix would become larger and as a result more accurate answers would be earned. In this paper the dynamics of a rotor-bearing system is analyzed, considering the gyroscopic effect. To increase the accuracy of modeling the thickness of the disk and bearings is also taken into account which would cause more complicated matrix to be solved. Entering these parameters to our modeling would change the results completely that these differences are shown in the results. As said upper, to define transfer matrix to reach the natural frequencies of probed system, introducing some elements would be one of the requirements. For the boundary condition of these elements, bearings at the end of the shaft are modeled as equivalent spring and dampers for the discretized system. Also, continuous model is used for the shaft in the system. By above considerations and using transfer matrix, exact results are taken from the calculations. Results Show that, by increasing thickness of the bearing the amplitude of vibration would decrease, but obviously the stiffness of the shaft and the natural frequencies of the system would accompany growth. Consequently it is easily understood that ignoring the influences of bearing and disk thicknesses would results not real answers.

Arsenic Mobility from Mining Tailings of Monte San Nicolas to Presa de Mata in Guanajuato, Mexico

Mining tailings represent a generating source of rich heavy metal material with a potential danger the public health and the environment, since these metals, under certain conditions, can leach and contaminate aqueous systems that serve like supplying potable water sources. The strategy for this work is based on the observation, experimentation and the simulation that can be obtained by binding real answers of the hydrodynamic behavior of metals leached from mining tailings, and the applied mathematics that provides the logical structure to decipher the individual effects of the general physicochemical phenomenon. The case of study presented herein focuses on mining tailings deposits located in Monte San Nicolas, Guanajuato, Mexico, an abandoned mine. This was considered the contamination source that under certain physicochemical conditions can favor the metal leaching, and its transport towards aqueous systems. In addition, the cartography, meteorology, geology and the hydrodynamics and hydrological characteristics of the place, will be helpful in determining the way and the time in which these systems can interact. Preliminary results demonstrated that arsenic presents a great mobility, since this one was identified in several superficial aqueous systems of the micro watershed, as well as in sediments in concentrations that exceed the established maximum limits in the official norms. Also variations in pH and potential oxide-reduction were registered, conditions that favor the presence of different species from this element its solubility and therefore its mobility.

Molecular Dynamics Simulation of Thermal Properties of Au3Ni Nanowire

The aim of this research was to calculate the thermal properties of Au3Ni Nanowire. The molecular dynamics (MD) simulation technique was used to obtain the effect of radius size on the energy, the melting temperature and the latent heat of fusion at the isobaric-isothermal (NPT) ensemble. The Quantum Sutton-Chen (Q-SC) many body interatomic potentials energy have been used for Gold (Au) and Nickel (Ni) elements and a mixing rule has been devised to obtain the parameters of these potentials for nanowire stats. Our MD simulation results show the melting temperature and latent heat of fusion increase upon increasing diameter of nanowire. Moreover, the cohesive energy decreased with increasing diameter of nanowire.

Prediction of Fatigue Crack Growth of Aeronautical Aluminum Alloy

In this paper fatigue crack growth behavior of aeronautical aluminum alloy 2024 T351 was studied. Effects of various loading and geometrical parameters are studied such as stress ratio, amplitude loading, etc. The fatigue crack growth with constant amplitude is studied using the AFGROW code when NASGRO model is used. The effect of the stress ratio is highlighted, where one notices a shift of the curves of crack growth. The comparative study between two orientations L-T and T-L on fatigue behavior are presented and shows the variation on the fatigue life. L-T orientation presents a good fatigue crack growth resistance. Effects of crack closure are shown in Paris domain and that no crack closure phenomenons are present at high stress intensity factor.

Adaptive Pulse Coupled Neural Network Parameters for Image Segmentation

For over a decade, the Pulse Coupled Neural Network (PCNN) based algorithms have been successfully used in image interpretation applications including image segmentation. There are several versions of the PCNN based image segmentation methods, and the segmentation accuracy of all of them is very sensitive to the values of the network parameters. Most methods treat PCNN parameters like linking coefficient and primary firing threshold as global parameters, and determine them by trial-and-error. The automatic determination of appropriate values for linking coefficient, and primary firing threshold is a challenging problem and deserves further research. This paper presents a method for obtaining global as well as local values for the linking coefficient and the primary firing threshold for neurons directly from the image statistics. Extensive simulation results show that the proposed approach achieves excellent segmentation accuracy comparable to the best accuracy obtainable by trial-and-error for a variety of images.

Verification and Validation for Java Classes using Design by Contract. The Modular External Approach

Since the conception of JML, many tools, applications and implementations have been done. In this context, the users or developers who want to use JML seem surounded by many of these tools, applications and so on. Looking for a common infrastructure and an independent language to provide a bridge between these tools and JML, we developed an approach to embedded contracts in XML for Java: XJML. This approach offer us the ability to separate preconditions, posconditions and class invariants using JML and XML, so we made a front-end which can process Runtime Assertion Checking, Extended Static Checking and Full Static Program Verification. Besides, the capabilities for this front-end can be extended and easily implemented thanks to XML. We believe that XJML is an easy way to start the building of a Graphic User Interface delivering in this way a friendly and IDE independency to developers community wich want to work with JML.

Determinants and Perspectives of an Accounting Career. Empirical Evidence on Students' Perceptions

This study realizes an empirical investigation of main factors to develop an accounting career, stereotypes on accountants and accounting and perceptions on future career path for a sample of master students in accounting. The research provides some insight into what master students consider when choosing their future career paths. The most important two reasons chosen by students were “career opportunities" and “future earnings. They see accounting as structured, governed by conformity, requiring skills in working with numbers, monotonous, accurate, more efficient than effective but also absorbing, interesting and involving a certain degree of novelty. Although these students plan to start their careers in a multinational or accounting/audit firm, most of those plan to leave after five years. It resulted that women value more flexibility and time requiring special attention in retention policies practiced by firms.

Robust Disturbance Rejection for Left Invertible Singular Systems with Nonlinear Uncertain Structure

The problem of robust disturbance rejection (RDR) using a proportional state feedback controller is studied for the case of Left Invertible MIMO generalized state space linear systems with nonlinear uncertain structure. Sufficient conditions for the problem to have a solution are established. The set of all proportional feedback controllers solving the problem subject to these conditions is analytically determined.

Growth Behaviors, Thermostable Direct Hemolysin Secretion and Fatty Acid Profiles of Acid-adapted and Non-adapted Vibrio parahaemolyticus

Three strains of Vibrio parahaemolyticus (690, BCRC 13023 and BCRC 13025) implicated in food poisoning outbreaks in Taiwan were subjected to acid adaptation at pH 5.5 for 90 min. The growth behaviors of acid-adapted and non-adapted V. parahaemolyticus in the media supplemented with various nitrogen and carbon sources were investigated. The effects of acid adaptation on the thermostable direct hemolysin (TDH) secretion and fatty acid profiles of V. parahaemolyticus were also examined. Results showed that acid-adapted and non-adapted V. parahaemolyticus 690, BCRC 13023 and BCRC 13025 grew similarly in TSB-3% NaCl and basal media supplemented with various carbon and nitrogen sources during incubation period. Higher TDH secretion was noted with V. parahaemolyticus 690 among the three strains. However, acid-adapted strains produced less amounts of TDH than non-adapted strains when they were grown in TSB-3% NaCl. Additionally, acid adaptation increased the ratio of SFA/USFA in cells of V. parahaemolyticus strains.

On-Line Geometrical Identification of Reconfigurable Machine Tool using Virtual Machining

One of the main research directions in CAD/CAM machining area is the reducing of machining time. The feedrate scheduling is one of the advanced techniques that allows keeping constant the uncut chip area and as sequel to keep constant the main cutting force. They are two main ways for feedrate optimization. The first consists in the cutting force monitoring, which presumes to use complex equipment for the force measurement and after this, to set the feedrate regarding the cutting force variation. The second way is to optimize the feedrate by keeping constant the material removal rate regarding the cutting conditions. In this paper there is proposed a new approach using an extended database that replaces the system model. The feedrate scheduling is determined based on the identification of the reconfigurable machine tool, and the feed value determination regarding the uncut chip section area, the contact length between tool and blank and also regarding the geometrical roughness. The first stage consists in the blank and tool monitoring for the determination of actual profiles. The next stage is the determination of programmed tool path that allows obtaining the piece target profile. The graphic representation environment models the tool and blank regions and, after this, the tool model is positioned regarding the blank model according to the programmed tool path. For each of these positions the geometrical roughness value, the uncut chip area and the contact length between tool and blank are calculated. Each of these parameters are compared with the admissible values and according to the result the feed value is established. We can consider that this approach has the following advantages: in case of complex cutting processes the prediction of cutting force is possible; there is considered the real cutting profile which has deviations from the theoretical profile; the blank-tool contact length limitation is possible; it is possible to correct the programmed tool path so that the target profile can be obtained. Applying this method, there are obtained data sets which allow the feedrate scheduling so that the uncut chip area is constant and, as a result, the cutting force is constant, which allows to use more efficiently the machine tool and to obtain the reduction of machining time.

Improving the Effectiveness of Software Testing through Test Case Reduction

This paper proposes a new technique for improving the efficiency of software testing, which is based on a conventional attempt to reduce test cases that have to be tested for any given software. The approach utilizes the advantage of Regression Testing where fewer test cases would lessen time consumption of the testing as a whole. The technique also offers a means to perform test case generation automatically. Compared to one of the techniques in the literature where the tester has no option but to perform the test case generation manually, the proposed technique provides a better option. As for the test cases reduction, the technique uses simple algebraic conditions to assign fixed values to variables (Maximum, minimum and constant variables). By doing this, the variables values would be limited within a definite range, resulting in fewer numbers of possible test cases to process. The technique can also be used in program loops and arrays.

A Mathematical Model for Predicting Isothermal Soil Moisture Profiles Using Finite Difference Method

Subgrade moisture content varies with environmental and soil conditions and has significant influence on pavement performance. Therefore, it is important to establish realistic estimates of expected subgrade moisture contents to account for the effects of this variable on predicted pavement performance during the design stage properly. The initial boundary soil suction profile for a given pavement is a critical factor in determining expected moisture variations in the subgrade for given pavement and climatic and soil conditions. Several numerical models have been developed for predicting water and solute transport in saturated and unsaturated subgrade soils. Soil hydraulic properties are required for quantitatively describing water and chemical transport processes in soils by the numerical models. The required hydraulic properties are hydraulic conductivity, water diffusivity, and specific water capacity. The objective of this paper was to determine isothermal moisture profiles in a soil fill and predict the soil moisture movement above the ground water table using a simple one-dimensional finite difference model.

Hopfield Network as Associative Memory with Multiple Reference Points

Hopfield model of associative memory is studied in this work. In particular, two main problems that it possesses: the apparition of spurious patterns in the learning phase, implying the well-known effect of storing the opposite pattern, and the problem of its reduced capacity, meaning that it is not possible to store a great amount of patterns without increasing the error probability in the retrieving phase. In this paper, a method to avoid spurious patterns is presented and studied, and an explanation of the previously mentioned effect is given. Another technique to increase the capacity of a network is proposed here, based on the idea of using several reference points when storing patterns. It is studied in depth, and an explicit formula for the capacity of the network with this technique is provided.

An Experimental Investigation on the Behavior of Pressure Tube under Symmetrical and Asymmetrical Heating Conditions in an Indian PHWR

Thermal behavior of fuel channel under loss of coolant accident (LOCA) is a major concern for nuclear reactor safety. LOCA along with failure of emergency cooling water system (ECC) may leads to mechanical deformations like sagging and ballooning. In order to understand the phenomenon an experiment has been carried out using 19 pin fuel element simulator. Main purpose of the experiment was to trace temperature profiles over the pressure tube, calandria tube and clad tubes of Indian Pressurized Heavy Water Reactor (IPHWR) under symmetrical and asymmetrical heat-up conditions. For simulating the fully voided scenario, symmetrical heating of pressure was carried out by injecting 13.2 KW (2 % of nominal power) to all the 19 pins and the temperatures of pressure tube, calandria tube and clad tubes were measured. During symmetrical heating the sagging of fuel channel was initiated at 460 °C and the highest temperature attained by PT was 650 °C . The decay heat from clad tubes was dissipated to moderator mainly by radiation and natural convection. The highest temperature of 680 °C was observed over the outer ring of clad tubes of fuel simulator. Again, to simulate partially voided condition, asymmetrical heating of pressure was carried out by supplying 8.0 kW power to upper 8 pins of fuel simulator and temperature profiles were measured. Along the circumference of pressure tube (PT) the highest temperature difference of 320 °C was observed, which highlights the magnitude of thermal stresses under partially voided conditions.

Fabrication of Autonomous Wheeled Mobile Robot for Industrial Applications Using Appropriate Technology

The autonomous mobile robot was designed and implemented which was capable of navigating in the industrial environments and did a job of picking objects from variable height and delivering it to another location following a predefined trajectory. In developing country like Bangladesh industrial robotics is not very prevalent yet, due to the high installation cost. The objective of this project was to develop an autonomous mobile robot for industrial application using the available resources in the local market at lower manufacturing cost. The mechanical system of the robot was comprised of locomotion, gripping and elevation system. Grippers were designed to grip objects of a predefined shape. Cartesian elevation system was designed for vertical movement of the gripper. PIC18F452 microcontroller was the brain of the control system. The prototype autonomous robot was fabricated for relatively lower load than the industry and the performance was tested in a virtual industrial environment created within the laboratory to realize the effectiveness.

Performance Evaluation of TCP Vegas versus Different TCP Variants in Homogeneous and Heterogeneous Wired Networks

A study on the performance of TCP Vegas versus different TCP variants in homogeneous and heterogeneous wired networks are performed via simulation experiment using network simulator (ns-2). This performance evaluation prepared a comparison medium for the performance evaluation of enhanced-TCP Vegas in wired network and for wireless network. In homogeneous network, the performance of TCP Tahoe, TCP Reno, TCP NewReno, TCP Vegas and TCP SACK are analyzed. In heterogeneous network, the performances of TCP Vegas against TCP variants are analyzed. TCP Vegas outperforms other TCP variants in homogeneous wired network. However, TCP Vegas achieves unfair throughput in heterogeneous wired network.

Main Bearing Stiffness Investigation

Simplified coupled engine block-crankshaft models based on beam theory provide an efficient substitute to engine simulation in the design process. These models require accurate definition of the main bearing stiffness. In this paper, an investigation of this stiffness is presented. The clearance effect is studied using a smooth bearing model. It is manifested for low shaft displacement. The hydrodynamic assessment model shows that the oil film has no stiffness for low loads and it is infinitely rigid for important loads. The deformation stiffness is determined using a suitable finite elements model based on real CADs. As a result, a main bearing behaviour law is proposed. This behaviour law takes into account the clearance, the hydrodynamic sustention and the deformation stiffness. It ensures properly the transition from the configuration low rigidity to the configuration high rigidity.

Combining Skin Color and Optical Flow for Computer Vision Systems

Skin color is an important visual cue for computer vision systems involving human users. In this paper we combine skin color and optical flow for detection and tracking of skin regions. We apply these techniques to gesture recognition with encouraging results. We propose a novel skin similarity measure. For grouping detected skin regions we propose a novel skin region grouping mechanism. The proposed techniques work with any number of skin regions making them suitable for a multiuser scenario.