Long-Term Structural Behavior of Resilient Materials for Reduction of Floor Impact Sound

People’s tendency towards living in apartment houses is increasing in a densely populated country. However, some residents living in apartment houses are bothered by noise coming from the houses above. In order to reduce noise pollution, the communities are increasingly imposing a bylaw, including the limitation of floor impact sound, minimum thickness of floors, and floor soundproofing solutions. This research effort focused on the specific long-time deflection of resilient materials in the floor sound insulation systems of apartment houses. The experimental program consisted of testing nine floor sound insulation specimens subjected to sustained load for 45 days. Two main parameters were considered in the experimental investigation: three types of resilient materials and magnitudes of loads. The test results indicated that the structural behavior of the floor sound insulation systems under long-time load was quite different from that the systems under short-time load. The loading period increased the deflection of floor sound insulation systems and the increasing rate of the long-time deflection of the systems with ethylene vinyl acetate was smaller than that of the systems with low density ethylene polystyrene.

Three-Level Converters Back-to-Back DC Bus Control for Torque Ripple Reduction of Induction Motor

This paper proposes a regulation method of back-to-back connected three-level converters in order to reduce the torque ripple in induction motor. First part is dedicated to the presentation of the feedback control of three-level PWM rectifier. In the second part, three-level NPC voltage source inverter balancing DC bus algorithm is presented. A theoretical analysis with a complete simulation of the system is presented to prove the excellent performance of the proposed technique.

Use of Green Coconut Pulp as Cream, Milk, Stabilizer and Emulsifier Replacer in Germinated Brown Rice Ice Cream

The aim of this study was to determine physicochemical and sensory properties of germinated brown rice ice cream as affected by replacement of cream, milk, stabilizer, and emulsifier with green coconut pulp. Five different formulations of ice cream were performed. Regular formulation of ice cream consisted of GBR juice, milk cream, milk powder, stabilizer, emulsifier, sucrose and salt. Replacing of cream, milk, stabilizer, and emulsifier with coconut pulp resulted in an increase in viscosity and overrun, but a decrease in hardness, melting rate, lightness (l*) and redness (a*). However, there was no significant difference among all formulations on any sensory attributes. The results also showed that the ice cream with replacement of coconut pulp contained less fat and protein than those of the regular ice cream. The findings suggested that green coconut pulp can be used as alternative ingredient to replace fat, milk stabilizer and emulsifier even in a high carbohydrate ice cream formulation.

The Dynamics of Microorganisms in Dried Yogurt Storages at Different Temperatures

Yoghurt is a fermented milk product. The process of making yogurt involves fermenting milk with live and active bacterial cultures by adding bacteria directly to the dairy product. It is usually made with a culture of Lactobacillus sp. (L. acidophilus or L. bulgaricus) and Streptococcus thermophilus. Many people like to eat it plain or flavored and it's also use as ingredient in many dishes. Yogurt is rich in nutrients including the microorganism which have important role in balancing the digestion and absorption of the boy.Consumers will benefit from lactic acid bacteria more or less depending on the amount of bacteria that lives in yogurt while eating. When purchasing yogurt, consumers should always check the label for live cultures. Yoghurt must keep in refrigerator at 4°C for up to ten days. After this amount of time, the cultures often become weak. This research studied freezing dry yogurt storage by monitoring on the survival of microorganisms when stored at different temperatures. At 300C, representative room temperature of country in equator zone, number of lactic acid bacteria reduced 4 log cycles in 10 week. At 400C, representative temperature in summer of country in equator zone, number of lactic acid bacteria also dropped 4 log cycle in 10 week, similar as storage at 300C. But drying yogurt storage at 400C couldn’t reformed to be good character yogurt as good as storage at 400C only 4 week storage too. After 1 month, it couldn’t bring back the yogurt form. So if it is inevitable to keep yogurt powder at a temperature of 40°C, yoghurt is maintained only up to 4 weeks.

The Effects of Seasonal Variation on the Microbial-N Flow to the Small Intestine and Prediction of Feed Intake in Grazing Karayaka Sheep

The objectives of the present study were to estimate the microbial-N flow to the small intestine and to predict the digestible organic matter intake (DOMI) in grazing Karayaka sheep based on urinary excretion of purine derivatives (xanthine, hypoxanthine, uric acid, and allantoin) by the use of spot urine sampling under field conditions. In the trial, 10 Karayaka sheep from 2 to 3 years of age were used. The animals were grazed in a pasture for ten months and fed with concentrate and vetch plus oat hay for the other two months (January and February) indoors. Highly significant linear and cubic relationships (P

Diagnosis of the Heart Rhythm Disorders by Using Hybrid Classifiers

In this study, it was tried to identify some heart rhythm disorders by electrocardiography (ECG) data that is taken from MIT-BIH arrhythmia database by subtracting the required features, presenting to artificial neural networks (ANN), artificial immune systems (AIS), artificial neural network based on artificial immune system (AIS-ANN) and particle swarm optimization based artificial neural network (PSO-NN) classifier systems. The main purpose of this study is to evaluate the performance of hybrid AIS-ANN and PSO-ANN classifiers with regard to the ANN and AIS. For this purpose, the normal sinus rhythm (NSR), atrial premature contraction (APC), sinus arrhythmia (SA), ventricular trigeminy (VTI), ventricular tachycardia (VTK) and atrial fibrillation (AF) data for each of the RR intervals were found. Then these data in the form of pairs (NSR-APC, NSR-SA, NSR-VTI, NSR-VTK and NSR-AF) is created by combining discrete wavelet transform which is applied to each of these two groups of data and two different data sets with 9 and 27 features were obtained from each of them after data reduction. Afterwards, the data randomly was firstly mixed within themselves, and then 4-fold cross validation method was applied to create the training and testing data. The training and testing accuracy rates and training time are compared with each other. As a result, performances of the hybrid classification systems, AIS-ANN and PSO-ANN were seen to be close to the performance of the ANN system. Also, the results of the hybrid systems were much better than AIS, too. However, ANN had much shorter period of training time than other systems. In terms of training times, ANN was followed by PSO-ANN, AIS-ANN and AIS systems respectively. Also, the features that extracted from the data affected the classification results significantly.

A Systematic Approach for Identifying Turning Center Capabilities with Vertical Machining Center in Milling Operation

Conventional machining is a form of subtractive manufacturing, in which a collection of material-working processes utilizing power-driven machine tools are used to remove undesired material to achieve a desired geometry. This paper presents an approach for comparison between turning center and vertical machining center by optimization of cutting parameters at cylindrical workpieces leading to minimum surface roughness by using taguchi methodology. Aluminum alloy was taken to conduct experiments due to its unique high strength-weight ratio that is maintained at elevated temperatures and their exceptional corrosion resistance. During testing, the effects of the cutting parameters on the surface roughness were investigated. Additionally, by using taguchi methodology for each of the cutting parameters (spindle speed, depth of cut, insert diameter, and feed rate) minimum surface roughness for the process of turn-milling was determined according to the cutting parameters. A confirmation experiment demonstrates the effectiveness of taguchi method.

Oblique Wing: Future Generation Transonic Aircraft

The demand for efficient transonic transport has been growing every day and may turn out to be the most pressed innovation in coming years. Oblique wing configuration was proposed as an alternative to conventional wing configuration for supersonic and transonic passenger aircraft due to its aerodynamic advantages. This paper re-demonstrates the aerodynamic advantages of oblique wing configuration using open source CFD code. The aerodynamic data were generated using Panel Method. Results show that Oblique Wing concept with elliptical wing planform offers a significant reduction in drag at transonic and supersonic speeds and approximately twice the lift distribution compared to conventional operating aircrafts. The paper also presents a preliminary conceptual aircraft sizing which can be used for further experimental analysis.

Damage Localization of Deterministic-Stochastic Systems

A scheme integrated with deterministic–stochastic subspace system identification and the method of damage localization vector is proposed in this study for damage detection of structures based on seismic response data. A series of shaking table tests using a five-storey steel frame has been conducted in National Center for Research on Earthquake Engineering (NCREE), Taiwan. Damage condition is simulated by reducing the cross-sectional area of some of the columns at the bottom. Both single and combinations of multiple damage conditions at various locations have been considered. In the system identification analysis, either full or partial observation conditions have been taken into account. It has been shown that the damaged stories can be identified from global responses of the structure to earthquakes if sufficiently observed. In addition to detecting damage(s) with respect to the intact structure, identification of new or extended damages of the as-damaged (ill-conditioned) counterpart has also been studied. The proposed scheme proves to be effective.

Influence of Strengthening with Perforated Steel Plates on the Behavior of Infill Walls and RC Frame

The contribution of the infill walls to the overall earthquake response of a structure is limited and this contribution is generally ignored in the analyses. Strengthening of the infill walls through different techniques has been and is being studied extensively in the literature to increase this limited contribution and the ductilities and energy absorption capacities of the infill walls to create non-structural components where the earthquake-induced energy can be absorbed without damaging the bearing components of the structural frame. The present paper summarizes an extensive research project dedicated to investigate the effects of strengthening the brick infill walls of a reinforced concrete (RC) frame on its lateral earthquake response. Perforated steel plates were used in strengthening due to several reasons, including the ductility and high deformation capacity of these plates, the fire resistant, recyclable and non-cancerogenic nature of mild steel, and the ease of installation and removal of the plates to the wall with the help of anchor bolts only. Furthermore, epoxy, which increases the cost and amount of labor of the strengthening process, is not needed in this technique. The individual behavior of the strengthened walls under monotonic diagonal and lateral reversed cyclic loading was investigated within the scope of the study. Upon achieving brilliant results, RC frames with strengthened infill walls were tested and are being tested to examine the influence of this strengthening technique on the overall behavior of the RC frames. Tests on the wall and frame specimens indicated that the perforated steel plates contribute to the lateral strength, rigidity, ductility and energy absorption capacity of the wall and the infilled frame to a major extent.

Memorabilia of Suan Sunandha through Interactive User Interface

The objectives of memorabilia of Suan Sunandha are to develop a general knowledge presentation about the historical royal garden through interactive graphic simulation technique and to employ high-functionality context in enhancing interactive user navigation. The approach infers non-intrusive display of relevant history in response to situational context. User’s navigation runs through the virtual reality campus, consisting of new and restored buildings. A flash back presentation of information pertaining to the history in the form of photos, paintings, and textual descriptions are displayed along each passing-by building. To keep the presentation lively, graphical simulation is created in a serendipity game play so that the user can both learn and enjoy the educational tour. The benefits of this human-computer interaction development are two folds. First, lively presentation technique and situational context modeling are developed that entail a usable paradigm of knowledge and information presentation combinations. Second, cost effective training and promotion for both internal personnel and public visitors to learn and keep informed of this historical royal garden can be furnished without the need for a dedicated public relations service. Future improvement on graphic simulation and ability based display can extend this work to be more realistic, user-friendly, and informative for all.

Maternal Smoking and Risk of Childhood Overweight and Obesity: A Meta-Analysis

The purpose of this study was to determine the significance of maternal smoking for the development of childhood overweight and/or obesity. Accordingly, a systematic literature review of English-language studies published from 1980 to 2012 using the following data bases: MEDLINE, PsychINFO, Cochrane Database of Systematic Reviews, and Dissertation Abstracts International was conducted. The following terms were used in the search: pregnancy, overweight, obesity, smoking, parents, childhood, risk factors. Eighteen studies of maternal smoking during pregnancy and obesity conducted in Europe, Asia, North America, and South America met the inclusion criteria. A meta-analysis of these studies indicated that maternal smoking during pregnancy is a significant risk factor for overweight and obesity; mothers who smoke during pregnancy are at a greater risk for developing obesity or overweight; the quantity of cigarettes consumed by the mother during pregnancy influenced the odds of offspring overweight and/or obesity. In addition, the results from moderator analyses suggest that part of the heterogeneity discovered between the studies can be explained by the region of world that the study occurred in and the age of the child at the time of weight assessment.

Growing Self Organising Map Based Exploratory Analysis of Text Data

Textual data plays an important role in the modern world. The possibilities of applying data mining techniques to uncover hidden information present in large volumes of text collections is immense. The Growing Self Organizing Map (GSOM) is a highly successful member of the Self Organising Map family and has been used as a clustering and visualisation tool across wide range of disciplines to discover hidden patterns present in the data. A comprehensive analysis of the GSOM’s capabilities as a text clustering and visualisation tool has so far not been published. These functionalities, namely map visualisation capabilities, automatic cluster identification and hierarchical clustering capabilities are presented in this paper and are further demonstrated with experiments on a benchmark text corpus.

Identification of Nonlinear Systems Structured by Hammerstein-Wiener Model

Standard Hammerstein-Wiener models consist of a linear subsystem sandwiched by two memoryless nonlinearities. The problem of identifying Hammerstein-Wiener systems is addressed in the presence of linear subsystem of structure totally unknown and polynomial input and output nonlinearities. Presently, the system nonlinearities are allowed to be noninvertible. The system identification problem is dealt by developing a two-stage frequency identification method. First, the parameters of system nonlinearities are identified. In the second stage, a frequency approach is designed to estimate the linear subsystem frequency gain. All involved estimators are proved to be consistent.

The Analysis of Teacher Talk in "Learner-centered" Teaching Mode

Being main teaching media and major source of comprehensive target language input, teacher talk plays an important role in learners' second-language acquisition. Under the trend of "learner-centered" teaching mode, some researchers think that the best teacher talk means less. But the author holds that, in Chinese second language classroom, it is not advisable to lay too much stress on the formal students' participation, which requires the teacher to say as little as possible and the student to say as much as possible. The emphasis should be put on how to raise teacher talk's quality.

The Study of Groundcover for Heat Reduction

This research investigated groundcover on the roof (green roof) which can reduce the temperature and carbon monoxide. This study is divided into 3 main aspects: 1. Types of groundcover affecting heat reduction 2. The efficiency on heat reduction of 3 types of groundcover, i.e. lawn, arachis pintoi, and purslane 3. Database for designing green roof. This study has been designed as an experimental research by simulating the 3 types of groundcover in 3 trays placed in the green house for recording the temperature change for 24 hours. The results showed that the groundcover with the highest heat reduction efficiency was lawn. The dense of the lawn can protect the heat transfer to the soil. For the further study, there should be a comparative study of the thickness and the types of soil to get more information for the suitable types of groundcover and the soil for designing the energy saving green roof.

Nanofibrous Ion Exchangers

The main goal of this study was to find simple and industrially applicable production of ion exchangers based on nanofibrous polystyrene matrix and characterization of prepared material. Starting polystyrene nanofibers were sulfonated and crosslinked under appropriate conditions at the same time by sulfuric acid. Strongly acidic cation exchanger was obtained in such a way. The polymer matrix was made from polystyrene nanofibers prepared by NanospiderTM technology. Various types postpolymerization reactions and other methods of crosslinking were studied. Greatly different behavior between nano- and microsize materials was observed. The final nanofibrous material was characterized and compared to common granular ion exchangers and available microfibrous ion exchangers. The sorption properties of nanofibrous ion exchangers were compared with the granular ion exchangers. For nanofibrous ion exchangers of comparable ion exchange capacity was observed considerably faster adsorption kinetics.

Search for New Design Elements in Time-Honoured Shops in Tainan—On Curriculum Practice about Culture Creative Industry

This paper mainly discusses the research and practice process of a laboratory curriculum by leading students to perform field investigation into time-honoured shops that have existed for more than 50 years in the downtown area of Tainan, Taiwan, and then search again for design elements and completing the design. The participants are juniors from the Department of Visual Communication Design, Kun Shan University. The duration of research and practice is two months. Operators of these shops are invited to jointly appraise the final achievements. 9 works out of 27 are chosen for final exhibition and commercialization.

Nafion Nanofiber Composite Membrane Fabrication for Fuel Cell Applications

A proton exchange membrane has been developed for direct methanol fuel cell (DMFC). The nanofiber network composite membranes were prepared by interconnected network of Nafion (perfuorosulfonic acid) nanofibers that have been embedded in an uncharged and inert polymer matrix, by electro-spinning. The spinning solution of Nafion with a low concentration (1 wt% compared to Nafion) of high molecular weight poly(ethylene oxide), as a carrier polymer. The interconnected network of Nafion nanofibers with average fiber diameter in the range of 160-700nm, were used to make the membranes, with the nanofiber occupying up to 85% of the membrane volume. The matrix polymer was crosslinked with Norland Optical Adhesive 63 under UV. The resulting membranes showed proton conductivity of 0.10 S/cm at 25°C and 80% RH; and methanol permeability of 3.6 x 10-6 cm2/s.

Properties of Rhizophora Charcoal for Product Design

This research investigated the properties of Rhizophora charcoal for product design on 3 aspects: electrical conductor, impurity absorption, and fresh fruit shelf life. After the study, the properties of Rhizophora charcoal were applied to produce local product model at Ban Yisarn, Ampawa District, Samudsongkram Province which can add value to the Rhizophora charcoal as one of the OTOP (One-Tambon-One product). The results showed that the Rhizophora charcoal is not an electrical conductor but good liquid impurity absorber and it can extend fresh fruit shelf life.