Nafion Nanofiber Composite Membrane Fabrication for Fuel Cell Applications

A proton exchange membrane has been developed for
direct methanol fuel cell (DMFC). The nanofiber network composite
membranes were prepared by interconnected network of Nafion
(perfuorosulfonic acid) nanofibers that have been embedded in an
uncharged and inert polymer matrix, by electro-spinning. The
spinning solution of Nafion with a low concentration (1 wt%
compared to Nafion) of high molecular weight poly(ethylene oxide),
as a carrier polymer. The interconnected network of Nafion
nanofibers with average fiber diameter in the range of 160-700nm,
were used to make the membranes, with the nanofiber occupying up
to 85% of the membrane volume. The matrix polymer was
crosslinked with Norland Optical Adhesive 63 under UV. The
resulting membranes showed proton conductivity of 0.10 S/cm at
25°C and 80% RH; and methanol permeability of 3.6 x 10-6 cm2/s.





References:
[1] ImanShabania,b, Mohammad Mahdi Hasani-Sadrabadia,c, VahidHaddadi-Asla, MasoudSoleimanid. Nanofiber-based polyelectrolytes as novel membranes for fuel cell applications, Journal of Membrane Science 368 (2011) 233
[2] M.M. Hasani-Sadrabadi, E. Dashtimoghadam, F. Majedi, K. Kabiri, N. Mokarram, M. Solati-Hashjin, H. Moaddel, Novel high-performance nanohybrid polyelectrolyte membranes based on bio-functionalized montmorillonite for fuel cell applications, Chem. Commun. 46 (2010) 6500.
[3] X. Du, J. Yu, B. Yi, M. Han, K. Bi, Performances of proton exchange membrane fuel cells with alternate membranes, Phys. Chem. Chem. Phys. 3 (2001) 3175.
[4] J.A. Kerres, Blended and cross-linked ionomer membranes for application in membrane fuel cells, Fuel Cells 5 (2005) 230.
[5] M.M. Hasani-Sadrabadi, E. Dashtimoghadam, S.R. Ghaffarian, M.H. HasaniSadrabadi, M. Heidari, H. Moaddel, Novel high-performance nanocomposite proton exchange membranes based on poly (ether sulfone), Renew. Energy 35 (2010) 226.
[6] M.M. Hasani-Sadrabadi, S.H. Emami, R. Ghaffarian, H. Moaddel, Nanocomposite membranes made from sulfonatedpoly (ether etherketone) and montmorillonite clay for fuel cell applications, Energy Fuels 22 (2008) 2539.
[7] K.H. Lee, D.J. Kim, B.G. Min, S.H. Lee, Polymeric nanofiber web-based artificial renal microfluidic chip, Biomed. Microdevices 9 (2007) 435.
[8] A. Fomhals, US Patent 1,975,504 (1934).
[9] M. Soleimani, S. Nadri, I. Shabani, Neurogenic differentiation of human conjunctiva mesenchymal stem cells in nanofibrous scaffold, Int. J. Dev. Biol. 54 (2010) 1295.
[10] R. Gopal, S. Kaur, C.Y. Feng, C. Chan, S. Ramakrishna, S. Tabe, T. Matsuura, Electrospunnanofibrouspolysulfone membranes as pre-filters: particulate removal, J. Membr. Sci. 289 (2007) 210.
[11] C. Pattamaprom, W. Hongrojjanawiwat, P. Koombhongse, P. Supaphol, T. Jarusuwannapoo, R. Rangkupan, The influence of solvent properties and functionality on the electrospinnability of polystyrene nanofibers, Macromol. Mater.Eng. 291 (2006) 840.
[12] J. Kim, D. Reneker, Polybenzimidazolenanofiber produced by electrospinning, Polym. Eng. Sci. 39 (1999) 849.
[13] L. Li, Y.L. Hsieh, Ultra-fine polyelectrolyte fibers from electrospinning of poly(acrylic acid), Polymer 46 (2005) 5133.
[14] Simader, K.;Kordesch, G., Fuel Cells and Their Applications, NewYork: VCH, 1996.
[15] Kunz, R.; Fento, H.R.; Jiang, J.M., Journal of Power Sources, vol. 150, no. 120, 2005
[16] C, Nithitanakul, M. and Supaphol, P. Mit-uppatham, "UltrafmeElectrospun Polyarnide-6 Fibers: Effect of Solution Conditions on Morphology and Average Fiber Diameter," Macromolecules. Chem. Physic, vol. 205, pp. 2327-2338, 2004
[17] K. J., Belvin, H. L., Raney, D. L., Su, J., Harrison, J. S. and Siochi, E. J. Pawlowski, "Electrospinning of a micro-air vehicle wing skin.," Polymer, vol. 44, pp. 1309-1314, 2003.
[18] A., Robitaille, L., Mokrini, A., Ajji, A. Laforgue, Macromolecule Material Engineering, vol. 292, no. 1229, 2007