A New Integer Programming Formulation for the Chinese Postman Problem with Time Dependent Travel Times

The Chinese Postman Problem (CPP) is one of the classical problems in graph theory and is applicable in a wide range of fields. With the rapid development of hybrid systems and model based testing, Chinese Postman Problem with Time Dependent Travel Times (CPPTDT) becomes more realistic than the classical problems. In the literature, we have proposed the first integer programming formulation for the CPPTDT problem, namely, circuit formulation, based on which some polyhedral results are investigated and a cutting plane algorithm is also designed. However, there exists a main drawback: the circuit formulation is only available for solving the special instances with all circuits passing through the origin. Therefore, this paper proposes a new integer programming formulation for solving all the general instances of CPPTDT. Moreover, the size of the circuit formulation is too large, which is reduced dramatically here. Thus, it is possible to design more efficient algorithm for solving the CPPTDT in the future research.

On the Reduction of Side Effects in Tomography

As the Computed Tomography(CT) requires normally hundreds of projections to reconstruct the image, patients are exposed to more X-ray energy, which may cause side effects such as cancer. Even when the variability of the particles in the object is very less, Computed Tomography requires many projections for good quality reconstruction. In this paper, less variability of the particles in an object has been exploited to obtain good quality reconstruction. Though the reconstructed image and the original image have same projections, in general, they need not be the same. In addition to projections, if a priori information about the image is known, it is possible to obtain good quality reconstructed image. In this paper, it has been shown by experimental results why conventional algorithms fail to reconstruct from a few projections, and an efficient polynomial time algorithm has been given to reconstruct a bi-level image from its projections along row and column, and a known sub image of unknown image with smoothness constraints by reducing the reconstruction problem to integral max flow problem. This paper also discusses the necessary and sufficient conditions for uniqueness and extension of 2D-bi-level image reconstruction to 3D-bi-level image reconstruction.

Effect of Pre-drying Treatments on Quality Characteristics of Dehydrated Tomato Slices

Tomato powder has good potential as substitute of tomato paste and other tomato products. In order to protect physicochemical properties and nutritional quality of tomato during dehydration process, investigation was carried out using different drying methods and pretreatments. Solar drier and continuous conveyor (tunnel) drier were used for dehydration where as calcium chloride (CaCl2), potassium metabisulphite (KMS), calcium chloride and potassium metabisulphite (CaCl2 +KMS), and sodium chloride (NaCl) selected for treatment.. lycopene content, dehydration ratio, rehydration ratio and non-enzymatic browning in addition to moisture, sugar and titrable acidity were studied. Results show that pre-treatment with CaCl2 and NaCl increased water removal and moisture mobility in tomato slices during drying of tomatoes. Where CaCl2 used along with KMS the NEB was recorded the least compared to other treatments and the best results were obtained while using the two chemicals in combination form. Storage studies in LDPE polymeric and metalized polyesters films showed less changes in the products packed in metallized polyester pouches and even after 6 months lycopene content did not decrease more than 20% as compared to the control sample and provide extension of shelf life in acceptable condition for 6 months. In most of the quality characteristics tunnel drier samples presented better values in comparison to solar drier.

Sustainable Urban Development of Slum Prone Area of Dhaka City

Dhaka, the capital city of Bangladesh, is one of the densely populated cities in the world. Due to rapid urbanization 60% of its population lives in slum and squatter settlements. The reason behind this poverty is low economic growth, inequitable distribution of income, unequal distribution of productive assets, unemployment and underemployment, high rate of population growth, low level of human resource development, natural disasters, and limited access to public services. Along with poverty, creating pressure on urban land, shelter, plots, open spaces this creates environmental and ecological degradation. These constraints are mostly resulted from the failures of the government policies and measures and only Government can solve this problem. This is now prime time to establish planning and environmental management policy and sustainable urban development for the city and for the urban slum dwellers which are free from eviction, criminals, rent seekers and other miscreants.

Balancing Tourism and Environment: The ETM Model

Environment both endowed and built are essential for tourism. However tourism and environment maintains a complex relationship, where in most cases environment is at the receiving end. Many tourism development activities have adverse environmental effects, mainly emanating from construction of general infrastructure and tourism facilities. These negative impacts of tourism can lead to the destruction of precious natural resources on which it depends. These effects vary between locations; and its effect on a hill destination is highly critical. This study aims at developing a Sustainable Tourism Planning Model for an environmentally sensitive tourism destination in Kerala, India. Being part of the Nilgiri mountain ranges, Munnar falls in the Western Ghats, one of the biological hotspots in the world. Endowed with a unique high altitude environment Munnar inherits highly significant ecological wealth. Giving prime importance to the protection of this ecological heritage, the study proposes a tourism planning model with resource conservation and sustainability as the paramount focus. Conceiving a novel approach towards sustainable tourism planning, the study proposes to assess tourism attractions using Ecological Sensitivity Index (ESI) and Tourism Attractiveness Index (TAI). Integration of these two indices will form the Ecology – Tourism Matrix (ETM), outlining the base for tourism planning in an environmentally sensitive destination. The ETM Matrix leads to a classification of tourism nodes according to its Conservation Significance and Tourism Significance. The spatial integration of such nodes based on the Hub & Spoke Principle constitutes sub – regions within the STZ. Ensuing analyses lead to specific guidelines for the STZ as a whole, specific tourism nodes, hubs and sub-regions. The study results in a multi – dimensional output, viz., (1) Classification system for tourism nodes in an environmentally sensitive region/ destination (2) Conservation / Tourism Development Strategies and Guidelines for the micro and macro regions and (3) A Sustainable Tourism Planning Tool particularly for Ecologically Sensitive Destinations, which can be adapted for other destinations as well.

Enhanced Genetic Algorithm Approach for Security Constrained Optimal Power Flow Including FACTS Devices

This paper presents a genetic algorithm based approach for solving security constrained optimal power flow problem (SCOPF) including FACTS devices. The optimal location of FACTS devices are identified using an index called overload index and the optimal values are obtained using an enhanced genetic algorithm. The optimal allocation by the proposed method optimizes the investment, taking into account its effects on security in terms of the alleviation of line overloads. The proposed approach has been tested on IEEE-30 bus system to show the effectiveness of the proposed algorithm for solving the SCOPF problem.

Exchanges of Knowledge about Product Configurations using XML Topic Map

Modeling product configurations needs large amounts of knowledge about technical and marketing restrictions on the product. Previous attempts to automate product configurations concentrate on representations and management of the knowledge for specific domains in fixed and isolated computing environments. Since the knowledge about product configurations is subject to continuous change and hard to express, these attempts often failed to efficiently manage and exchange the knowledge in collaborative product development. In this paper, XML Topic Map (XTM) is introduced to represent and exchange the knowledge about product configurations in collaborative product development. A product configuration model based on XTM along with its merger and inference facilities enables configuration engineers in collaborative product development to manage and exchange their knowledge efficiently. A prototype implementation is also presented to demonstrate the proposed model can be applied to engineering information systems to exchange the product configuration knowledge.

Transmission Lines Loading Enhancement Using ADPSO Approach

Discrete particle swarm optimization (DPSO) is a powerful stochastic evolutionary algorithm that is used to solve the large-scale, discrete and nonlinear optimization problems. However, it has been observed that standard DPSO algorithm has premature convergence when solving a complex optimization problem like transmission expansion planning (TEP). To resolve this problem an advanced discrete particle swarm optimization (ADPSO) is proposed in this paper. The simulation result shows that optimization of lines loading in transmission expansion planning with ADPSO is better than DPSO from precision view point.

A Study on the Location and Range of Obstacle Region in Robot's Point Placement Task based on the Vision Control Algorithm

This paper is concerned with the application of the vision control algorithm for robot's point placement task in discontinuous trajectory caused by obstacle. The presented vision control algorithm consists of four models, which are the robot kinematic model, vision system model, parameters estimation model, and robot joint angle estimation model.When the robot moves toward a target along discontinuous trajectory, several types of obstacles appear in two obstacle regions. Then, this study is to investigate how these changes will affect the presented vision control algorithm.Thus, the practicality of the vision control algorithm is demonstrated experimentally by performing the robot's point placement task in discontinuous trajectory by obstacle.

On the Early Development of Dispersion in Flow through a Tube with Wall Reactions

This is a study on numerical simulation of the convection-diffusion transport of a chemical species in steady flow through a small-diameter tube, which is lined with a very thin layer made up of retentive and absorptive materials. The species may be subject to a first-order kinetic reversible phase exchange with the wall material and irreversible absorption into the tube wall. Owing to the velocity shear across the tube section, the chemical species may spread out axially along the tube at a rate much larger than that given by the molecular diffusion; this process is known as dispersion. While the long-time dispersion behavior, well described by the Taylor model, has been extensively studied in the literature, the early development of the dispersion process is by contrast much less investigated. By early development, that means a span of time, after the release of the chemical into the flow, that is shorter than or comparable to the diffusion time scale across the tube section. To understand the early development of the dispersion, the governing equations along with the reactive boundary conditions are solved numerically using the Flux Corrected Transport Algorithm (FCTA). The computation has enabled us to investigate the combined effects on the early development of the dispersion coefficient due to the reversible and irreversible wall reactions. One of the results is shown that the dispersion coefficient may approach its steady-state limit in a short time under the following conditions: (i) a high value of Damkohler number (say Da ≥ 10); (ii) a small but non-zero value of absorption rate (say Γ* ≤ 0.5).

Path Planning of a Robot Manipulator using Retrieval RRT Strategy

This paper presents an algorithm which extends the rapidly-exploring random tree (RRT) framework to deal with change of the task environments. This algorithm called the Retrieval RRT Strategy (RRS) combines a support vector machine (SVM) and RRT and plans the robot motion in the presence of the change of the surrounding environment. This algorithm consists of two levels. At the first level, the SVM is built and selects a proper path from the bank of RRTs for a given environment. At the second level, a real path is planned by the RRT planners for the given environment. The suggested method is applied to the control of KUKA™,, a commercial 6 DOF robot manipulator, and its feasibility and efficiency are demonstrated via the cosimulatation of MatLab™, and RecurDyn™,.

Effects of Data Correlation in a Sparse-View Compressive Sensing Based Image Reconstruction

Computed tomography and laminography are heavily investigated in a compressive sensing based image reconstruction framework to reduce the dose to the patients as well as to the radiosensitive devices such as multilayer microelectronic circuit boards. Nowadays researchers are actively working on optimizing the compressive sensing based iterative image reconstruction algorithm to obtain better quality images. However, the effects of the sampled data’s properties on reconstructed the image’s quality, particularly in an insufficient sampled data conditions have not been explored in computed laminography. In this paper, we investigated the effects of two data properties i.e. sampling density and data incoherence on the reconstructed image obtained by conventional computed laminography and a recently proposed method called spherical sinusoidal scanning scheme. We have found that in a compressive sensing based image reconstruction framework, the image quality mainly depends upon the data incoherence when the data is uniformly sampled.

E-Business Security: Methodological Considerations

A great deal of research works in the field information systems security has been based on a positivist paradigm. Applying the reductionism concept of the positivist paradigm for information security means missing the bigger picture and thus, the lack of holism which could be one of the reasons why security is still overlooked, comes as an afterthought or perceived from a purely technical dimension. We need to reshape our thinking and attitudes towards security especially in a complex and dynamic environment such as e- Business to develop a holistic understanding of e-Business security in relation to its context as well as considering all the stakeholders in the problem area. In this paper we argue the suitability and need for more inductive interpretive approach and qualitative research method to investigate e-Business security. Our discussion is based on a holistic framework of enquiry, nature of the research problem, the underling theoretical lens and the complexity of e-Business environment. At the end we present a research strategy for developing a holistic framework for understanding of e-Business security problems in the context of developing countries based on an interdisciplinary inquiry which considers their needs and requirements.

A Sustainable Design that Enhance the Quality of Life and Human Behavior's

Public parks are placed high on the research agenda, with many studies addressing their social, economic and environment influences in different countries around the world. They have been recognized as contributors to the physical quality of urban environments. Recently, a broader view of public parks has emerged. This view goes well beyond the traditional value of parks as places for more recreation and visual delight, to depict them as valuable contributors to broader strategic objectives, such as property values, place attractiveness, job opportunities, social belonging, public health, tourist development, and improving the overall quality of life. This research examines the role of public parks in enhancing the quality of human life in Egyptian environment. It measures 'quality of life' in terms of 'human needs' and 'well-being'. This should open ways for policymakers, practitioners, researchers and the public to realize the potentials of public parks towards improving the quality of life.

Simulation of Multiphase Flows Using a Modified Upwind-Splitting Scheme

A robust AUSM+ upwind discretisation scheme has been developed to simulate multiphase flow using consistent spatial discretisation schemes and a modified low-Mach number diffusion term. The impact of the selection of an interfacial pressure model has also been investigated. Three representative test cases have been simulated to evaluate the accuracy of the commonly-used stiffenedgas equation of state with respect to the IAPWS-IF97 equation of state for water. The algorithm demonstrates a combination of robustness and accuracy over a range of flow conditions, with the stiffened-gas equation tending to overestimate liquid temperature and density profiles.

Barriers and Opportunities for the Adoption of e-Governance Services

In this article a bibliography research takes place to track down and introduce the barriers and opportunities for the adoption of e-Governance services mainly from the side of citizen, that is to say, the demand side. Although governments invest continuously in producing of e-Governance services, citizens face difficulties to adopt these services. Barriers derive and prevent them from using e-Governance services. Barrier is anything preventing citizens from the adoption of e-Governance services. Barriers impede or do not allow the adoption of e-Governance services by the citizens. If the barriers are pinpointed, it will be possible to take them into consideration while designing e-Governance services which the citizens are likely to use, if the obstacles are raised. The barriers will thus be converted in opportunities that will facilitate the adoption.

Rheology of Composites with Nature Vegetal Origin Fibers

Conventional materials like glass, wood or metals replacement with polymer materials is still continuing. More simple thus cheaper production is the main reason. However due to high energy and petrochemical prices are polymer prices increasing too. That´s why various kinds of fillers are used to make polymers cheaper. Of course target is to maintain or improve properties of these compounds. In this paper are solved rheology issues of polymers compounded with vegetal origin fibers.

Averaging Model of a Three-Phase Controlled Rectifier Feeding an Uncontrolled Buck Converter

Dynamic models of power converters are normally time-varying because of their switching actions. Several approaches are applied to analyze the power converters to achieve the timeinvariant models suitable for system analysis and design via the classical control theory. The paper presents how to derive dynamic models of the power system consisting of a three-phase controlled rectifier feeding an uncontrolled buck converter by using the combination between the well known techniques called the DQ and the generalized state-space averaging methods. The intensive timedomain simulations of the exact topology model are used to support the accuracies of the reported model. The results show that the proposed model can provide good accuracies in both transient and steady-state responses.

Self-protection Method for Flying Robots to Avoid Collision

This paper provides a new approach to solve the motion planning problems of flying robots in uncertain 3D dynamic environments. The robots controlled by this method can adaptively choose the fast way to avoid collision without information about the shapes and trajectories of obstacles. Based on sphere coordinates the new method accomplishes collision avoidance of flying robots without any other auxiliary positioning systems. The Self-protection System gives robots self-protection abilities to work in uncertain 3D dynamic environments. Simulations illustrate the validity of the proposed method.

Mix Goat and Sheep Yogurt: Development and Product Characterization

Yogurts are prepared by fermenting milk with bacterial cultures consisting of a mixture of Streptococcus ssp. thermophilus and Lactobacillus delbrueckii ssp. bulgaricus. The main aim of this investigation was to develop a majority goat yogurt, with the addition of sheep milk in order to have a final product with good physicochemical quality properties and sensorial attributes. Four types of yogurts were prepared presenting the following proportion of goat and sheep milk respectively: C100 – 100%; C80 – 80%/20%; C60 – 60%/40%; C50 – 50%/50%. The goat milk was from the Serrana Jarmelista breed and the sheep milk from the Serra da Estrela breed. The inclusion of sheep milk improved attractiveness to consumers, and it also improved the nutritional value of the product, mainly the fatty acid and mineral contents. The C50 yogurt was preferred by 28% of the panellists, followed by the C100 with 16%  and the commercial cow yogurt was 40% of preferences.