Hi-Fi Traffic Clearance Technique for Life Saving Vehicles using Differential GPS System

This paper may be considered as combination of both pervasive computing and Differential GPS (global positioning satellite) which relates to control automatic traffic signals in such a way as to pre-empt normal signal operation and permit lifesaving vehicles. Before knowing the arrival of the lifesaving vehicles from the signal there is a chance of clearing the traffic. Traffic signal preemption system includes a vehicle equipped with onboard computer system capable of capturing diagnostic information and estimated location of the lifesaving vehicle using the information provided by GPS receiver connected to the onboard computer system and transmitting the information-s using a wireless transmitter via a wireless network. The fleet management system connected to a wireless receiver is capable of receiving the information transmitted by the lifesaving vehicle .A computer is also located at the intersection uses corrected vehicle position, speed & direction measurements, in conjunction with previously recorded data defining approach routes to the intersection, to determine the optimum time to switch a traffic light controller to preemption mode so that lifesaving vehicles can pass safely. In case when the ambulance need to take a “U" turn in a heavy traffic area we suggest a solution. Now we are going to make use of computerized median which uses LINKED BLOCKS (removable) to solve the above problem.

Relation between Significance of Attribute Set and Single Attribute

In the research field of Rough Set, few papers concern the significance of attribute set. However, there is important relation between the significance of single attribute and that of attribute set, which should not be ignored. In this paper, we draw conclusions by case analysis that (1) the attribute set including single attributes with high significance is certainly significant, while, (2)the attribute set which consists of single attributes with low significance possibly has high significance. We validate the conclusions on discernibility matrix and the results demonstrate the contribution of our conclusions.

The Removal of As(V) from Drinking Waters by Coagulation Process using Iron Salts

In this study arsenate [As(V)] removal from drinking water by coagulation process was investigated. Ferric chloride (FeCl3.6H2O) and ferrous sulfate (FeSO4.7H2O) were used as coagulant. The effects of major operating variables such as coagulant dose (1–30 mg/L) and pH (5.5–9.5) were investigated. Ferric chloride and ferrous sulfate were found as effective and reliable coagulant due to required dose, residual arsenate and coagulant concentration. Optimum pH values for maximum arsenate removal for ferrous sulfate and ferric chloride were found as 8 and 7.5. The arsenate removal efficiency decreased at neutral and acidic pH values for Fe(II) and at the high acidic and high alkaline pH for Fe(III). It was found that the increase of coagulant dose caused a substantial increase in the arsenate removal. But above a certain ferric chloride and ferrous sulfate dosage, the increase in arsenate removal was not significant. Ferric chloride and ferrous sulfate dose above 8 mg/L slightly increased arsenate removal.

Blast Induced Ground Shock Effects on Pile Foundations

Due to increased number of terrorist attacks in recent years, loads induced by explosions need to be incorporated in building designs. For safer performance of a structure, its foundation should have sufficient strength and stability. Therefore, prior to any reconstruction or rehabilitation of a building subjected to blast, it is important to examine adverse effects on the foundation caused by blast induced ground shocks. This paper evaluates the effects of a buried explosion on a pile foundation. It treats the dynamic response of the pile in saturated sand, using explicit dynamic nonlinear finite element software LS-DYNA. The blast induced wave propagation in the soil and the horizontal deformation of pile are presented and the results are discussed. Further, a parametric study is carried out to evaluate the effect of varying the explosive shape on the pile response. This information can be used to evaluate the vulnerability of piled foundations to credible blast events as well as develop guidance for their design.

Simulation of Thin Film Relaxation by Buried Misfit Networks

The present work is motivated by the idea that the layer deformation in anisotropic elasticity can be estimated from the theory of interfacial dislocations. In effect, this work which is an extension of a previous approach given by one of the authors determines the anisotropic displacement fields and the critical thickness due to a complex biperiodic network of MDs lying just below the free surface in view of the arrangement of dislocations. The elastic fields of such arrangements observed along interfaces play a crucial part in the improvement of the physical properties of epitaxial systems. New results are proposed in anisotropic elasticity for hexagonal networks of MDs which contain intrinsic and extrinsic stacking faults. We developed, using a previous approach based on the relative interfacial displacement and a Fourier series formulation of the displacement fields, the expressions of elastic fields when there is a possible dissociation of MDs. The numerical investigations in the case of the observed system Si/(111)Si with low twist angles show clearly the effect of the anisotropy and thickness when the misfit networks are dissociated.

Molecular Dynamics Simulation of Annular Flow Boiling in a Microchannel with 70000 Atoms

Molecular dynamics simulation of annular flow boiling in a nanochannel with 70000 particles is numerically investigated. In this research, an annular flow model is developed to predict the superheated flow boiling heat transfer characteristics in a nanochannel. To characterize the forced annular boiling flow in a nanochannel, an external driving force F ext ranging from 1to12PN (PN= Pico Newton) is applied along the flow direction to inlet fluid particles during the simulation. Based on an annular flow model analysis, it is found that saturation condition and superheat degree have great influences on the liquid-vapor interface. Also, the results show that due to the relatively strong influence of surface tension in small channel, the interface between the liquid film and vapor core is fairly smooth, and the mean velocity along the stream-wise direction does not change anymore.

Design of Multiplier-free State-Space Digital Filters

In this paper, a novel approach is presented for designing multiplier-free state-space digital filters. The multiplier-free design is obtained by finding power-of-2 coefficients and also quantizing the state variables to power-of-2 numbers. Expressions for the noise variance are derived for the quantized state vector and the output of the filter. A “structuretransformation matrix" is incorporated in these expressions. It is shown that quantization effects can be minimized by properly designing the structure-transformation matrix. Simulation results are very promising and illustrate the design algorithm.

Full Potential Study of Electronic and Optical Properties of NdF3

We report the electronic structure and optical properties of NdF3 compound. Our calculations are based on density functional theory (DFT) using the full potential linearized augmented plane wave (FPLAPW) method with the inclusion of spin orbit coupling. We employed the local spin density approximation (LSDA) and Coulomb-corrected local spin density approximation, known for treating the highly correlated 4f electrons properly, is able to reproduce the correct insulating ground state. We find that the standard LSDA approach is incapable of correctly describing the electronic properties of such materials since it positions the f-bands incorrectly resulting in an incorrect metallic ground state. On the other hand, LSDA + U approximation, known for treating the highly correlated 4f electrons properly, is able to reproduce the correct insulating ground state. Interestingly, however, we do not find any significant differences in the optical properties calculated using LSDA, and LSDA + U suggesting that the 4f electrons do not play a decisive role in the optical properties of these compounds. The reflectivity for NdF3 compound stays low till 7 eV which is consistent with their large energy gaps. The calculated energy gaps are in good agreement with experiments. Our calculated reflectivity compares well with the experimental data and the results are analyzed in the light of band to band transitions.

New Design Methodologies for High Speed Low Power XOR-XNOR Circuits

New methodologies for XOR-XNOR circuits are proposed to improve the speed and power as these circuits are basic building blocks of many arithmetic circuits. This paper evaluates and compares the performance of various XOR-XNOR circuits. The performance of the XOR-XNOR circuits based on TSMC 0.18μm process models at all range of the supply voltage starting from 0.6V to 3.3V is evaluated by the comparison of the simulation results obtained from HSPICE. Simulation results reveal that the proposed circuit exhibit lower PDP and EDP, more power efficient and faster when compared with best available XOR-XNOR circuits in the literature.

An Intelligent Human-Computer Interaction System for Decision Support

This paper proposes a novel architecture for developing decision support systems. Unlike conventional decision support systems, the proposed architecture endeavors to reveal the decision-making process such that humans' subjectivity can be incorporated into a computerized system and, at the same time, to preserve the capability of the computerized system in processing information objectively. A number of techniques used in developing the decision support system are elaborated to make the decisionmarking process transparent. These include procedures for high dimensional data visualization, pattern classification, prediction, and evolutionary computational search. An artificial data set is first employed to compare the proposed approach with other methods. A simulated handwritten data set and a real data set on liver disease diagnosis are then employed to evaluate the efficacy of the proposed approach. The results are analyzed and discussed. The potentials of the proposed architecture as a useful decision support system are demonstrated.

Fuzzy Sliding Mode Speed Controller for a Vector Controlled Induction Motor

This paper presents a speed fuzzy sliding mode controller for a vector controlled induction machine (IM) fed by a voltage source inverter (PWM). The sliding mode based fuzzy control method is developed to achieve fast response, a best disturbance rejection and to maintain a good decoupling. The problem with sliding mode control is that there is high frequency switching around the sliding mode surface. The FSMC is the combination of the robustness of Sliding Mode Control (SMC) and the smoothness of Fuzzy Logic (FL). To reduce the torque fluctuations (chattering), the sign function used in the conventional SMC is substituted with a fuzzy logic algorithm. The proposed algorithm was simulated by Matlab/Simulink software and simulation results show that the performance of the control scheme is robust and the chattering problem is solved.

The Household Behavior on Solid Waste and Wastewater Management in Municipal Area with Cleanliness Policy Determined by Community

The Bangnanglee Sub-district Administrative Office, Thailand had initiated a policy to environmental protection with encouraging household waste management in order to promote civil responsibility for domestic hygienic. This research studied the household behaviors on solid waste and wastewater management. A sample population of 306 families answered a questionnaire. The study showed that, on average, domestic activities had produced 1.93 kilograms of waste per household per day. It has been found that 79% of the households made several attempts to reduce their own amount of waste. 80% of the households stationed their own garbage bins. 71% managed their waste by selling recyclable products. As for the rest of the waste, 51% burned them, while 29% disposed their waste in the nearby public trashcans and other 13% have them buried. As for wastewater, 60% of the households disposed it into the sewage, whereas 30% disposed them right from their elevated house.

Simulation of Ethical Behavior in Urban Transportation

For controlling urban transportations, traffic lights show similar behavior for different kinds of vehicles at intersections. Emergency vehicles need special behavior at intersections, so traffic lights should behave in different manner when emergency vehicles approach them. At the present time, intelligent traffic lights control urban transportations intelligently. In this paper the ethical aspect of this topic is considered. A model is proposed for adding special component to emergency vehicles and traffic lights for controlling traffic in ethical manner. The proposed model is simulated by JADE.

Estimation of Attenuation and Phase Delay in Driving Voltage Waveform of an Ultra-High-Speed Image Sensor by Dimensional Analysis

We present an explicit expression to estimate driving voltage attenuation through RC networks representation of an ultrahigh- speed image sensor. Elmore delay metric for a fundamental RC chain is employed as the first-order approximation. By application of dimensional analysis to SPICE simulation data, we found a simple expression that significantly improves the accuracy of the approximation. Estimation error of the resultant expression for uniform RC networks is less than 2%. Similarly, another simple closed-form model to estimate 50 % delay through fundamental RC networks is also derived with sufficient accuracy. The framework of this analysis can be extended to address delay or attenuation issues of other VLSI structures.

Fretting Fatigue behavior of Bolted Single Lap Joints of Aluminum Alloys

In this paper, the effect of bolt clamping force on the fatigue behavior of bolted single lap joints of aluminum alloy 2024- T3 have been studied using numerical finite element method. To do so, a three dimensional model according to the bolted single lap joint has been created and numerical analysis has been carried out using finite element based package. Then the stress distribution and also the slip amplitudes have been calculated in the critical regions and the outcome have been compared with the available experimental fatigue tests results. The numerical results show that in low applied clamping force, the fatigue failure of the specimens occur around the stress concentration location (the bolted hole edge) due to the tensile stresses and thus fatigue crack propagation, but with increase of the clamping force, the fatigue life increases and the cracks nucleate and propagate far from the hole edge because of fretting fatigue. In other words, with the further increase of clamping force value of the joint, the fatigue life reduces due to occurrence of the fretting fatigue in the critical location where the slip amplitude is within its critical occurs earlier.

Impact of Combustion of Water in Fuel on Polycyclic Aromatic Hydrocarbon (Pah-s)Precursors- Formation

Some of the polycyclic aromatic hydrocarbons (PAHs) are the strongest known carcinogens compounds; the majority of them are mostly produced by the incomplete combustion of fossil fuels; Motor vehicles are a significant source of polycyclic aromatic hydrocarbon (PAH) where diesel emission is one of the main sources of such compounds available in the ambient air. There is a big concern about the increasing concentration of PAHs in the environment. Researchers are trying to explore optimal methods to reduce those pollutants and improve the quality of air. Water blended fuel is one of the possible approaches to reduce emission of PAHs from the combustion of diesel in urban and domestic vehicles. In this work a modeling study was conducted using CHEMKIN-PRO software to simulate spray combustion at similar diesel engine conditions. Surrogate fuel of (80 % n-heptane and 20 % toluene) was used due to detailed kinetic and thermodynamic data needed for modeling is available for this kind of fuel but not available for diesel. An emulsified fuel with 3, 5, 8, 10 and 20 % water by volume is used as an engine feed for this study. The modeling results show that water has a significant effect on reducing engine soot and PAHs precursors formation up to certain extent.

Comparative Analysis of Different Control Strategies for Electro-hydraulic Servo Systems

The main goal of the study is to analyze all relevant properties of the electro hydraulic systems and based on that to make a proper choice of the control strategy that may be used for the control of the servomechanism system. A combination of electronic and hydraulic systems is widely used since it combines the advantages of both. Hydraulic systems are widely spread because of their properties as accuracy, flexibility, high horsepower-to-weight ratio, fast starting, stopping and reversal with smoothness and precision, and simplicity of operations. On the other hand, the modern control of hydraulic systems is based on control of the circuit fed to the inductive solenoid that controls the position of the hydraulic valve. Since this circuit may be easily handled by PWM (Pulse Width Modulation) signal with a proper frequency, the combination of electrical and hydraulic systems became very fruitful and usable in specific areas as airplane and military industry. The study shows and discusses the experimental results obtained by the control strategy (classical feedback (PID) & neural network) using MATLAB and SIMULINK [1]. Finally, the special attention was paid to the possibility of neuro-controller design and its application to control of electro-hydraulic systems and to make comparative with classical control.

Reliability Optimization for 3G Cellular Access Networks

This paper address the network reliability optimization problem in the optical access network design for the 3G cellular systems. We presents a novel 0-1 integer programming model for designing optical access network topologies comprised of multi-rings with common-edge in order to guarantee always-on services. The results show that the proposed model yields access network topologies with the optimal reliablity and satisfies both network cost limitations and traffic demand requirements.

EEG-Based Fractal Analysis of Different Motor Imagery Tasks using Critical Exponent Method

The objective of this paper is to characterize the spontaneous Electroencephalogram (EEG) signals of four different motor imagery tasks and to show hereby a possible solution for the present binary communication between the brain and a machine ora Brain-Computer Interface (BCI). The processing technique used in this paper was the fractal analysis evaluated by the Critical Exponent Method (CEM). The EEG signal was registered in 5 healthy subjects,sampling 15 measuring channels at 1024 Hz.Each channel was preprocessed by the Laplacian space ltering so as to reduce the space blur and therefore increase the spaceresolution. The EEG of each channel was segmented and its Fractaldimension (FD) calculated. The FD was evaluated in the time interval corresponding to the motor imagery and averaged out for all the subjects (each channel). In order to characterize the FD distribution,the linear regression curves of FD over the electrodes position were applied. The differences FD between the proposed mental tasks are quantied and evaluated for each experimental subject. The obtained results of the proposed method are a substantial fractal dimension in the EEG signal of motor imagery tasks and can be considerably utilized as the multiple-states BCI applications.

What Creative Industries Have to Offer to Business? Creative Partnerships and Mutual Benefits

In the time of globalisation, growing uncertainty, ambiguity and change, traditional way of doing business are no longer sufficient and it is important to consider non-conventional methods and approaches to release creativity and facilitate innovation and growth. Thus, creative industries, as a natural source of creativity and innovation, draw particular attention. This paper explores feasibility of building creative partnerships between creative industries and business and brings attention to mutual benefits derived from such partnerships. Design/approach - This paper is a theoretical exploration of projects, practices and research findings addressing collaboration between creative industries and business. Thus, it concerns creative industries, arts, business and its representatives in order to define requirements for creative partnerships to work and succeed. Findings – Current practices in engaging into arts-business partnerships are still very few, although most of creative partnerships proved to be highly valuable and mutually beneficial. Certain conditions shall be provided in order to benefit from arts-business creative synergy. Originality/value- By integrating different sources of literature, this article provides a base for conducting empirical research in several dimensions within arts-business partnerships.