Multi-Objective Cellular Manufacturing System under Machines with Different Life-Cycle using Genetic Algorithm

In this paper a multi-objective nonlinear programming model of cellular manufacturing system is presented which minimize the intercell movements and maximize the sum of reliability of cells. We present a genetic approach for finding efficient solutions to the problem of cell formation for products having multiple routings. These methods find the non-dominated solutions and according to decision makers prefer, the best solution will be chosen.

Autonomous Control of Multiple Mobile Manipulators

This paper considers the autonomous navigation problem of multiple n-link nonholonomic mobile manipulators within an obstacle-ridden environment. We present a set of nonlinear acceleration controllers, derived from the Lyapunov-based control scheme, which generates collision-free trajectories of the mobile manipulators from initial configurations to final configurations in a constrained environment cluttered with stationary solid objects of different shapes and sizes. We demonstrate the efficiency of the control scheme and the resulting acceleration controllers of the mobile manipulators with results through computer simulations of an interesting scenario.

A Neurofuzzy Learning and its Application to Control System

A neurofuzzy approach for a given set of input-output training data is proposed in two phases. Firstly, the data set is partitioned automatically into a set of clusters. Then a fuzzy if-then rule is extracted from each cluster to form a fuzzy rule base. Secondly, a fuzzy neural network is constructed accordingly and parameters are tuned to increase the precision of the fuzzy rule base. This network is able to learn and optimize the rule base of a Sugeno like Fuzzy inference system using Hybrid learning algorithm, which combines gradient descent, and least mean square algorithm. This proposed neurofuzzy system has the advantage of determining the number of rules automatically and also reduce the number of rules, decrease computational time, learns faster and consumes less memory. The authors also investigate that how neurofuzzy techniques can be applied in the area of control theory to design a fuzzy controller for linear and nonlinear dynamic systems modelling from a set of input/output data. The simulation analysis on a wide range of processes, to identify nonlinear components on-linely in a control system and a benchmark problem involving the prediction of a chaotic time series is carried out. Furthermore, the well-known examples of linear and nonlinear systems are also simulated under the Matlab/Simulink environment. The above combination is also illustrated in modeling the relationship between automobile trips and demographic factors.

A New Perturbation Technique in Numerical Study on Buckling of Composite Shells under Axial Compression

A numerical study is presented on buckling and post buckling behaviour of laminated carbon fiber reinforced plastic (CFRP) thin-walled cylindrical shells under axial compression using asymmetric meshing technique (AMT). Asymmetric meshing technique is a perturbation technique to introduce disturbance without changing geometry, boundary conditions or loading conditions. Asymmetric meshing affects predicted buckling load, buckling mode shape and post-buckling behaviour. Linear (eigenvalue) and nonlinear (Riks) analyses have been performed to study the effect of asymmetric meshing in the form of a patch on buckling behaviour. The reduction in the buckling load using Asymmetric meshing technique was observed to be about 15%. An isolated dimple formed near the bifurcation point and the size of which increased to reach a stable state in the post-buckling region. The load-displacement curve behaviour applying asymmetric meshing is quite similar to the curve obtained using initial geometric imperfection in the shell model.

Electricity Consumption Prediction Model using Neuro-Fuzzy System

In this paper the development of neural network based fuzzy inference system for electricity consumption prediction is considered. The electricity consumption depends on number of factors, such as number of customers, seasons, type-s of customers, number of plants, etc. It is nonlinear process and can be described by chaotic time-series. The structure and algorithms of neuro-fuzzy system for predicting future values of electricity consumption is described. To determine the unknown coefficients of the system, the supervised learning algorithm is used. As a result of learning, the rules of neuro-fuzzy system are formed. The developed system is applied for predicting future values of electricity consumption of Northern Cyprus. The simulation of neuro-fuzzy system has been performed.

Identification of Nonlinear Systems Using Radial Basis Function Neural Network

This paper uses the radial basis function neural network (RBFNN) for system identification of nonlinear systems. Five nonlinear systems are used to examine the activity of RBFNN in system modeling of nonlinear systems; the five nonlinear systems are dual tank system, single tank system, DC motor system, and two academic models. The feed forward method is considered in this work for modelling the non-linear dynamic models, where the KMeans clustering algorithm used in this paper to select the centers of radial basis function network, because it is reliable, offers fast convergence and can handle large data sets. The least mean square method is used to adjust the weights to the output layer, and Euclidean distance method used to measure the width of the Gaussian function.

Advanced Gronwall-Bellman-Type Integral Inequalities and Their Applications

In this paper, some new nonlinear generalized Gronwall-Bellman-Type integral inequalities with mixed time delays are established. These inequalities can be used as handy tools to research stability problems of delayed differential and integral dynamic systems. As applications, based on these new established inequalities, some p-stable results of a integro-differential equation are also given. Two numerical examples are presented to illustrate the validity of the main results.

Lower Order Harmonics Minimisation in CHB Inverter Using GA and Decomposition by WT

Nowadays Multilevel inverters are widely using in various applications. Modulation strategy at fundamental switching frequency like, SHEPWM is prominent technique to eliminate lower order of harmonics with less switching losses and better harmonic profile. The equations which are formed by SHE are highly nonlinear transcendental in nature, there may exist single, multiple or even no solutions for a particular MI. However, some loads such as electrical drives, it is required to operate in whole range of MI. In order to solve SHE equations for whole range of MI, intelligent techniques are well suited to solve equations so as to produce lest %THDV. Hence, this paper uses Continuous genetic algorithm for minimising harmonics. This paper also presents wavelet based analysis of harmonics. The developed algorithm is simulated and %THD from FFT analysis and Wavelet analysis are compared. MATLAB programming environment and SIMULINK models are used whenever necessary.

Revealing Nonlinear Couplings between Oscillators from Time Series

Quantitative characterization of nonlinear directional couplings between stochastic oscillators from data is considered. We suggest coupling characteristics readily interpreted from a physical viewpoint and their estimators. An expression for a statistical significance level is derived analytically that allows reliable coupling detection from a relatively short time series. Performance of the technique is demonstrated in numerical experiments.

Stable Robust Adaptive Controller and Observer Design for a Class of SISO Nonlinear Systems with Unknown Dead Zone

This paper presents a new stable robust adaptive controller and observer design for a class of nonlinear systems that contain i. Coupling of unmeasured states and unknown parameters ii. Unknown dead zone at the system actuator. The system is firstly cast into a modified form in which the observer and parameter estimation become feasible. Then a stable robust adaptive controller, state observer, parameter update laws are derived that would provide global adaptive system stability and desirable performance. To validate the approach, simulation was performed to a single-link mechanical system with a dynamic friction model and unknown dead zone exists at the system actuation. Then a comparison is presented with the results when there is no dead zone at the system actuation.

Study Punching Shear of Steel Fiber Reinforced Self Compacting Concrete Slabs by Nonlinear Analysis

This paper deals with behavior and capacity of punching shear force for flat slabs produced from steel fiber reinforced self compacting concrete (SFRSCC) by application nonlinear finite element method. Nonlinear finite element analysis on nine slab specimens was achieved by using ANSYS software. A general description of the finite element method, theoretical modeling of concrete and reinforcement are presented. The nonlinear finite element analysis program ANSYS is utilized owing to its capabilities to predict either the response of reinforced concrete slabs in the post elastic range or the ultimate strength of a flat slabs produced from steel fiber reinforced self compacting concrete (SFRSCC). In order to verify the analytical model used in this research using test results of the experimental data, the finite element analysis were performed then a parametric study of the effect ratio of flexural reinforcement, ratio of the upper reinforcement, and volume fraction of steel fibers were investigated. A comparison between the experimental results and those predicted by the existing models are presented. Results and conclusions may be useful for designers, have been raised, and represented.

EML-Estimation of Multivariate t Copulas with Heuristic Optimization

In recent years, copulas have become very popular in financial research and actuarial science as they are more flexible in modelling the co-movements and relationships of risk factors as compared to the conventional linear correlation coefficient by Pearson. However, a precise estimation of the copula parameters is vital in order to correctly capture the (possibly nonlinear) dependence structure and joint tail events. In this study, we employ two optimization heuristics, namely Differential Evolution and Threshold Accepting to tackle the parameter estimation of multivariate t distribution models in the EML approach. Since the evolutionary optimizer does not rely on gradient search, the EML approach can be applied to estimation of more complicated copula models such as high-dimensional copulas. Our experimental study shows that the proposed method provides more robust and more accurate estimates as compared to the IFM approach.

Chua’s Circuit Regulation Using a Nonlinear Adaptive Feedback Technique

Chua’s circuit is one of the most important electronic devices that are used for Chaos and Bifurcation studies. A central role of secure communication is devoted to it. Since the adaptive control is used vastly in the linear systems control, here we introduce a new trend of application of adaptive method in the chaos controlling field. In this paper, we try to derive a new adaptive control scheme for Chua’s circuit controlling because control of chaos is often very important in practical operations. The novelty of this approach is for sake of its robustness against the external perturbations which is simulated as an additive noise in all measured states and can be generalized to other chaotic systems. Our approach is based on Lyapunov analysis and the adaptation law is considered for the feedback gain. Because of this, we have named it NAFT (Nonlinear Adaptive Feedback Technique). At last, simulations show the capability of the presented technique for Chua’s circuit.

Approximate Solution of Nonlinear Fredholm Integral Equations of the First Kind via Converting to Optimization Problems

In this paper we introduce an approach via optimization methods to find approximate solutions for nonlinear Fredholm integral equations of the first kind. To this purpose, we consider two stages of approximation. First we convert the integral equation to a moment problem and then we modify the new problem to two classes of optimization problems, non-constraint optimization problems and optimal control problems. Finally numerical examples is proposed.

Nonlinear Effects in Stiffness Modeling of Robotic Manipulators

The paper focuses on the enhanced stiffness modeling of robotic manipulators by taking into account influence of the external force/torque acting upon the end point. It implements the virtual joint technique that describes the compliance of manipulator elements by a set of localized six-dimensional springs separated by rigid links and perfect joints. In contrast to the conventional formulation, which is valid for the unloaded mode and small displacements, the proposed approach implicitly assumes that the loading leads to the non-negligible changes of the manipulator posture and corresponding amendment of the Jacobian. The developed numerical technique allows computing the static equilibrium and relevant force/torque reaction of the manipulator for any given displacement of the end-effector. This enables designer detecting essentially nonlinear effects in elastic behavior of manipulator, similar to the buckling of beam elements. It is also proposed the linearization procedure that is based on the inversion of the dedicated matrix composed of the stiffness parameters of the virtual springs and the Jacobians/Hessians of the active and passive joints. The developed technique is illustrated by an application example that deals with the stiffness analysis of a parallel manipulator of the Orthoglide family

Automated Process Quality Monitoring with Prediction of Fault Condition Using Measurement Data

Detection of incipient abnormal events is important to improve safety and reliability of machine operations and reduce losses caused by failures. Improper set-ups or aligning of parts often leads to severe problems in many machines. The construction of prediction models for predicting faulty conditions is quite essential in making decisions on when to perform machine maintenance. This paper presents a multivariate calibration monitoring approach based on the statistical analysis of machine measurement data. The calibration model is used to predict two faulty conditions from historical reference data. This approach utilizes genetic algorithms (GA) based variable selection, and we evaluate the predictive performance of several prediction methods using real data. The results shows that the calibration model based on supervised probabilistic principal component analysis (SPPCA) yielded best performance in this work. By adopting a proper variable selection scheme in calibration models, the prediction performance can be improved by excluding non-informative variables from their model building steps.

Stabilization and Observation of Attitude Control Systems for Micro Satellites

In this paper, we are interested in attitude control of a satellite, which using wheels of reaction, by state feedback. First, we develop a method allowing us to put the control and its integral in the state-feedback form. Then, by using the theorem of Gronwall- Bellman, we put the sufficient conditions so that the nonlinear system modeling the satellite is stabilisable and observed by state feedback.

About the Structural Stability of the Model of the Nonelectroneutral Current Sheath

The structural stability of the model of a nonelectroneutral current sheath is investigated. The stationary model of a current sheath represents the system of four connected nonlinear differential first-order equations and thus they should manifest structural instability property, i.e. sensitivity to the infinitesimal changes of parameters and starting conditions. Domains of existence of the solutions of current sheath type are found. Those solutions of the current sheath type are realized only in some regions of sevendimensional space of parameters of the problem. The phase volume of those regions is small in comparison with the whole phase volume of the definition range of those parameters. It is shown that the offered model of a nonelectroneutral current sheath is applicable for theoretical interpretation of the bifurcational current sheaths observed in the magnetosphere.

A New Fuzzy Mathematical Model in Recycling Collection Networks: A Possibilistic Approach

Focusing on the environmental issues, including the reduction of scrap and consumer residuals, along with the benefiting from the economic value during the life cycle of goods/products leads the companies to have an important competitive approach. The aim of this paper is to present a new mixed nonlinear facility locationallocation model in recycling collection networks by considering multi-echelon, multi-suppliers, multi-collection centers and multifacilities in the recycling network. To make an appropriate decision in reality, demands, returns, capacities, costs and distances, are regarded uncertain in our model. For this purpose, a fuzzy mathematical programming-based possibilistic approach is introduced as a solution methodology from the recent literature to solve the proposed mixed-nonlinear programming model (MNLP). The computational experiments are provided to illustrate the applicability of the designed model in a supply chain environment and to help the decision makers to facilitate their analysis.

Temporal Analysis of Magnetic Nerve Stimulation–Towards Enhanced Systems via Virtualisation

The triumph of inductive neuro-stimulation since its rediscovery in the 1980s has been quite spectacular. In lots of branches ranging from clinical applications to basic research this system is absolutely indispensable. Nevertheless, the basic knowledge about the processes underlying the stimulation effect is still very rough and rarely refined in a quantitative way. This seems to be not only an inexcusable blank spot in biophysics and for stimulation prediction, but also a fundamental hindrance for technological progress. The already very sophisticated devices have reached a stage where further optimization requires better strategies than provided by simple linear membrane models of integrate-and-fire style. Addressing this problem for the first time, we suggest in the following text a way for virtual quantitative analysis of a stimulation system. Concomitantly, this ansatz seems to provide a route towards a better understanding by using nonlinear signal processing and taking the nerve as a filter that is adapted for neuronal magnetic stimulation. The model is compact and easy to adjust. The whole setup behaved very robustly during all performed tests. Exemplarily a recent innovative stimulator design known as cTMS is analyzed and dimensioned with this approach in the following. The results show hitherto unforeseen potentials.