A Web-Based System for Mapping Features into ISO 14649-Compliant Machining Workingsteps

The rapid development of manufacturing and information systems has caused significant changes in manufacturing environments in recent decades. Mass production has given way to flexible manufacturing systems, in which an important characteristic is customized or "on demand" production. In this scenario, the seamless and without gaps information flow becomes a key factor for success of enterprises. In this paper we present a framework to support the mapping of features into machining workingsteps compliant with the ISO 14649 standard (known as STEP-NC). The system determines how the features can be made with the available manufacturing resources. Examples of the mapping method are presented for features such as a pocket with a general surface.

GeoSEMA: A Modelling Platform, Emerging “GeoSpatial-based Evolutionary and Mobile Agents“

Spatial and mobile computing evolves. This paper describes a smart modeling platform called “GeoSEMA". This approach tends to model multidimensional GeoSpatial Evolutionary and Mobile Agents. Instead of 3D and location-based issues, there are some other dimensions that may characterize spatial agents, e.g. discrete-continuous time, agent behaviors. GeoSEMA is seen as a devoted design pattern motivating temporal geographic-based applications; it is a firm foundation for multipurpose and multidimensional special-based applications. It deals with multipurpose smart objects (buildings, shapes, missiles, etc.) by stimulating geospatial agents. Formally, GeoSEMA refers to geospatial, spatio-evolutive and mobile space constituents where a conceptual geospatial space model is given in this paper. In addition to modeling and categorizing geospatial agents, the model incorporates the concept of inter-agents event-based protocols. Finally, a rapid software-architecture prototyping GeoSEMA platform is also given. It will be implemented/ validated in the next phase of our work.

Sophorolipids Production by Candida Bombicola using Synthetic Dairy Wastewater

Sophorolipids (SLs) production by the yeast Candida bombicola was studied in batch shake flasks using synthetic dairy wastewaters (SDWW) with or without any added external carbon and nitrogen sources. A maximum SLs production of 38.76 g/l was observed with the SDWW supplemented with low cost substrate of sugarcane molasses at 50 g/l and soybean oil at 50 g/l. When the SDWW was supplemented with more costly glucose, yeast extract, urea and soybean oil, the production, however, got lowered to only 29.49 g/l, but with a maximum biomass production of 17.38 g/l together with a complete utilization of the carbon sources.

Everyday Life in the City of Kyzylorda and Almaty in the 20-30-s of the XX Century (State Health Services)

The relevance of the study of everyday life in Almaty and Kyzylorda are associated with the emergence of the modern trends in historiography and socializing areas of government reform. The relevance is due to the fact that in the early twentieth century Kyzylorda and Almaty began to develop as a city and this period has a special place in the life of the state. An interesting aspect of the everyday life of the inhabitants of the new city, which was built in the era of Stalin's Five-Year Plans, can be examined through the eyes of the Soviet people living in a specific environment, reflecting the life of the citizens. The study of industrialization of the Soviet Union and the attention paid to new developments in the first five years of everyday aspects as the impact of the modernization of the 1930s was one of the decisive factors in the lives of residents. Among these factors, we would like to highlight the medical field, which is the basis of all human life, specifically focusing on the state of medicine in Alma-Ata in the first 20-30-years of the twentieth century, and analyze the different aspects of human life, determining the quality of medical care to the population during this period.

Tuning a Fractional Order PID Controller with Lead Compensator in Frequency Domain

To achieve the desired specifications of gain and phase margins for plants with time-delay that stabilized with FO-PID controller a lead compensator is designed. At first the range of controlled system stability based on stability boundary criteria is determined. Using stability boundary locus method in frequency domain the fractional order controller parameters are tuned and then with drawing bode diagram in frequency domain accessing to desired gain and phase margin are shown. Numerical examples are given to illustrate the shapes of the stabilizing region and to show the design procedure.

An AHP-Delphi Multi-Criteria Usage Cases Model with Application to Citrogypsum Decisions, Case Study: Kimia Gharb Gostar Industries Company

Today, advantage of biotechnology especially in environmental issues compared to other technologies is irrefragable. Kimia Gharb Gostar Industries Company, as a largest producer of citric acid in Middle East, applies biotechnology for this goal. Citrogypsum is a by–product of citric acid production and it considered as a valid residuum of this company. At this paper summary of acid citric production and condition of Citrogypsum production in company were introduced in addition to defmition of Citrogypsum production and its applications in world. According to these information and evaluation of present conditions about Iran needing to Citrogypsum, the best priority was introduced and emphasized on strategy selection and proper programming for self-sufficiency. The Delphi technique was used to elicit expert opinions about criteria for evaluating the usages. The criteria identified by the experts were profitability, capacity of production, the degree of investment, marketable, production ease and time production. The Analytical Hierarchy Process (ARP) and Expert Choice software were used to compare the alternatives on the criteria derived from the Delphi process.

Clubs Forming on Crazyvote -The Blurred Social Boundary Between Online Communities and the Real World

With the rapid growth and development of information and communication technology, the Internet has played a definite and irreplaceable role in people-s social lives in Taiwan like in other countries. In July 2008, on a general social website, an unexpected phenomenon was noticed – that there were more than one hundred users who started forming clubs voluntarily and having face-to-face gatherings for specific purposes. In this study, it-s argued whether or not teenagers- social contact on the Internet is involved in their life context, and tried to reveal the teenagers- social preferences, values, and needs, which merge with and influence teenagers- social activities. Therefore, the study conducts multiple user experience research methods, which include practical observations and qualitative analysis by contextual inquiries and in-depth interviews. Based on the findings, several design implications for software related to social interactions and cultural inheritance are offered. It is concluded that the inherent values of a social behaviors might be a key issue in developing computer-mediated communication or interaction designs in the future.

Sensory, Microbiological and Chemical Assessment of Cod (Gadus morhua) Fillets during Chilled Storage as Influenced by Bleeding Methods

The effects of seawater and slurry ice bleeding methods on the sensory, microbiological and chemical quality changes of cod fillets during chilled storage were examined in this study. The results from sensory evaluation showed that slurry ice bleeding method prolonged the shelf life of cod fillets up to 13-14 days compared to 10-11 days for fish bled in seawater. Slurry ice bleeding method also led to a slower microbial growth and biochemical developments, resulting lower total plate count (TPC), H2S-producing bacteria count, total volatile basic nitrogen (TVB-N), trimethylamine (TMA), free fatty acid (FFA) content and higher phospholipid content (PL) compared to those of samples bled in seawater. The results of principle component analysis revealed that TPC, H2S-producing bacteria, TVB-N, TMA and FFA were in significant correlation. They were also in negative correlation with sensory evaluation (Torry score), PL and water holding capacity (WHC).

An Assessment of the Small Hydropower Potential of Sisakht Region of Yasuj

Energy generated by the force of water in hydropower can provide a more sustainable, non-polluting alternative to fossil fuels, along with other renewable sources of energy, such as wind, solar and tidal power, bio energy and geothermal energy. Small scale hydroelectricity in Iran is well suited for “off-grid" rural electricity applications, while other renewable energy sources, such as wind, solar and biomass, can be beneficially used as fuel for pumping groundwater for drinking and small scale irrigation in remote rural areas or small villages. Small Hydro Power plants in Iran have very low operating and maintenance costs because they consume no fossil or nuclear fuel and do not involve high temperature processes. The equipment is relatively simple to operate and maintain. Hydropower equipment can adjust rapidly to load changes. The extended equipment life provides significant economic advantages. Some hydroelectric plants installed 100 years ago still operate reliably. The Polkolo river is located on Karun basin at southwest of Iran. Situation and conditions of Polkolo river are evaluated for construction of small hydropower in this article. The topographical conditions and the existence of permanent water from springs provide the suitability to install hydroelectric power plants on the river Polkolo. The cascade plant consists of 9 power plants connected with each other and is having the total head as 1100m and discharge about 2.5cubic meter per second. The annual production of energy is 105.5 million kwh.

Adaptive PID Control of Wind Energy Conversion Systems Using RASP1 Mother Wavelet Basis Function Networks

In this paper a PID control strategy using neural network adaptive RASP1 wavelet for WECS-s control is proposed. It is based on single layer feedforward neural networks with hidden nodes of adaptive RASP1 wavelet functions controller and an infinite impulse response (IIR) recurrent structure. The IIR is combined by cascading to the network to provide double local structure resulting in improving speed of learning. This particular neuro PID controller assumes a certain model structure to approximately identify the system dynamics of the unknown plant (WECS-s) and generate the control signal. The results are applied to a typical turbine/generator pair, showing the feasibility of the proposed solution.

Emerging Wireless Standards - WiFi, ZigBee and WiMAX

The world of wireless telecommunications is rapidly evolving. Technologies under research and development promise to deliver more services to more users in less time. This paper presents the emerging technologies helping wireless systems grow from where we are today into our visions of the future. This paper will cover the applications and characteristics of emerging wireless technologies: Wireless Local Area Networks (WiFi-802.11n), Wireless Personal Area Networks (ZigBee) and Wireless Metropolitan Area Networks (WiMAX). The purpose of this paper is to explain the impending 802.11n standard and how it will enable WLANs to support emerging media-rich applications. The paper will also detail how 802.11n compares with existing WLAN standards and offer strategies for users considering higher-bandwidth alternatives. The emerging IEEE 802.15.4 (ZigBee) standard aims to provide low data rate wireless communications with high-precision ranging and localization, by employing UWB technologies for a low-power and low cost solution. WiMAX (Worldwide Interoperability for Microwave Access) is a standard for wireless data transmission covering a range similar to cellular phone towers. With high performance in both distance and throughput, WiMAX technology could be a boon to current Internet providers seeking to become the leader of next generation wireless Internet access. This paper also explores how these emerging technologies differ from one another.

Culture of Oleaginous Yeasts in Dairy Industry Wastewaters to Obtain Lipids Suitable for the Production of II-Generation Biodiesel

The oleaginous yeasts Lipomyces starkey were grown in the presence of dairy industry wastewaters (DIW). The yeasts were able to degrade the organic components of DIW and to produce a significant fraction of their biomass as triglycerides. When using DIW from the Ricotta cheese production or residual whey as growth medium, the L. starkey could be cultured without dilution nor external organic supplement. On the contrary, the yeasts could only partially degrade the DIW from the Mozzarella cheese production, due to the accumulation of a metabolic product beyond the threshold of toxicity. In this case, a dilution of the DIW was required to obtain a more efficient degradation of the carbon compounds and an higher yield in oleaginous biomass. The fatty acid distribution of the microbial oils obtained showed a prevalence of oleic acid, and is compatible with the production of a II generation biodiesel offering a good resistance to oxidation as well as an excellent cold-performance.

Effects of Allelochemical Gramine on Photosynthetic Pigments of Cyanobacterium Microcystis aeruginosa

Toxic and bloom-forming cyanobacterium Microcystis aeruginosa was exposed to antialgal allelochemical gramine (0, 0.5, 1, 2, 4, 8 mg·L-1), The effects of gramine on photosynthetic pigments (lipid soluble: chlorophyll a and β-carotene; water soluble: phycocyanin, allophycocyanin, phycoerythrin, and total phycobilins) and absorption spectra were studied in order to identify the most sensitive pigment probe implicating the crucial suppression site on photosynthetic apparatus. The results obtained indicated that all pigment parameters were decreased with gramine concentration increasing and exposure time extending. The above serious bleaching of pigments was also reflected on the scanning results of absorption spectra. Phycoerytherin exhibited the highest sensitivity to gramine added, following by the largest relative decrease. It was concluded that gramine seriously influenced algal photosynthetic activity by destroying photosynthetic pigments and phycoerythrin most sensitive to gramine might be contributed to its placing the outside of phycobilins.

The Overall Aspects of E-Leaning Issues, Developments, Opportunities and Challenges

Rapid steps made in the field of Information and Communication Technology (ICT) has facilitated the development of teaching and learning methods and prepared them to serve the needs of an assorted educational institution. In other words, the information age has redefined the fundamentals and transformed the institutions and method of services delivery forever. The vision is the articulation of a desire to transform the method of teaching and learning could proceed through e-learning. E-learning is commonly deliberated to use of networked information and communications technology in teaching and learning practice. This paper deals the general aspects of the e-leaning with its issues, developments, opportunities and challenges, which can the higher institutions own.

Web Traffic Mining using Neural Networks

With the explosive growth of data available on the Internet, personalization of this information space become a necessity. At present time with the rapid increasing popularity of the WWW, Websites are playing a crucial role to convey knowledge and information to the end users. Discovering hidden and meaningful information about Web users usage patterns is critical to determine effective marketing strategies to optimize the Web server usage for accommodating future growth. The task of mining useful information becomes more challenging when the Web traffic volume is enormous and keeps on growing. In this paper, we propose a intelligent model to discover and analyze useful knowledge from the available Web log data.

Multi-Agent Systems for Intelligent Clustering

Intelligent systems are required in order to quickly and accurately analyze enormous quantities of data in the Internet environment. In intelligent systems, information extracting processes can be divided into supervised learning and unsupervised learning. This paper investigates intelligent clustering by unsupervised learning. Intelligent clustering is the clustering system which determines the clustering model for data analysis and evaluates results by itself. This system can make a clustering model more rapidly, objectively and accurately than an analyzer. The methodology for the automatic clustering intelligent system is a multi-agent system that comprises a clustering agent and a cluster performance evaluation agent. An agent exchanges information about clusters with another agent and the system determines the optimal cluster number through this information. Experiments using data sets in the UCI Machine Repository are performed in order to prove the validity of the system.

Cyber Warriors for Cyber Security and Information Assurance- An Academic Perspective

A virtualized and virtual approach is presented on academically preparing students to successfully engage at a strategic perspective to understand those concerns and measures that are both structured and not structured in the area of cyber security and information assurance. The Master of Science in Cyber Security and Information Assurance (MSCSIA) is a professional degree for those who endeavor through technical and managerial measures to ensure the security, confidentiality, integrity, authenticity, control, availability and utility of the world-s computing and information systems infrastructure. The National University Cyber Security and Information Assurance program is offered as a Master-s degree. The emphasis of the MSCSIA program uniquely includes hands-on academic instruction using virtual computers. This past year, 2011, the NU facility has become fully operational using system architecture to provide a Virtual Education Laboratory (VEL) accessible to both onsite and online students. The first student cohort completed their MSCSIA training this past March 2, 2012 after fulfilling 12 courses, for a total of 54 units of college credits. The rapid pace scheduling of one course per month is immensely challenging, perpetually changing, and virtually multifaceted. This paper analyses these descriptive terms in consideration of those globalization penetration breaches as present in today-s world of cyber security. In addition, we present current NU practices to mitigate risks.

Data Transmission Reliability in Short Message Integrated Distributed Monitoring Systems

Short message integrated distributed monitoring systems (SM-DMS) are growing rapidly in wireless communication applications in various areas, such as electromagnetic field (EMF) management, wastewater monitoring, and air pollution supervision, etc. However, delay in short messages often makes the data embedded in SM-DMS transmit unreliably. Moreover, there are few regulations dealing with this problem in SMS transmission protocols. In this study, based on the analysis of the command and data requirements in the SM-DMS, we developed a processing model for the control center to solve the delay problem in data transmission. Three components of the model: the data transmission protocol, the receiving buffer pool method, and the timer mechanism were described in detail. Discussions on adjusting the threshold parameter in the timer mechanism were presented for the adaptive performance during the runtime of the SM-DMS. This model optimized the data transmission reliability in SM-DMS, and provided a supplement to the data transmission reliability protocols at the application level.

Design of Nonlinear Robust Control in a Class of Structurally Stable Functions

An approach of design of stable of control systems with ultimately wide ranges of uncertainly disturbed parameters is offered. The method relies on using of nonlinear structurally stable functions from catastrophe theory as controllers. Theoretical part presents an analysis of designed nonlinear second-order control systems. As more important the integrators in series, canonical controllable form and Jordan forms are considered. The analysis resumes that due to added controllers systems become stable and insensitive to any disturbance of parameters. Experimental part presents MATLAB simulation of design of control systems of epidemic spread, aircrafts angular motion and submarine depth. The results of simulation confirm the efficiency of offered method of design. KeywordsCatastrophes, robust control, simulation, uncertain parameters.

Auto Tuning PID Controller based on Improved Genetic Algorithm for Reverse Osmosis Plant

An optimal control of Reverse Osmosis (RO) plant is studied in this paper utilizing the auto tuning concept in conjunction with PID controller. A control scheme composing an auto tuning stochastic technique based on an improved Genetic Algorithm (GA) is proposed. For better evaluation of the process in GA, objective function defined newly in sense of root mean square error has been used. Also in order to achieve better performance of GA, more pureness and longer period of random number generation in operation are sought. The main improvement is made by replacing the uniform distribution random number generator in conventional GA technique to newly designed hybrid random generator composed of Cauchy distribution and linear congruential generator, which provides independent and different random numbers at each individual steps in Genetic operation. The performance of newly proposed GA tuned controller is compared with those of conventional ones via simulation.