Innovative Fabric Integrated Thermal Storage Systems and Applications

In northern European climates, domestic space heating and hot water represents a significant proportion of total primary total primary energy use and meeting these demands from a national electricity grid network supplied by renewable energy sources provides an opportunity for a significant reduction in EU CO2 emissions. However, in order to adapt to the intermittent nature of renewable energy generation and to avoid co-incident peak electricity usage from consumers that may exceed current capacity, the demand for heat must be decoupled from its generation. Storage of heat within the fabric of dwellings for use some hours, or days, later provides a route to complete decoupling of demand from supply and facilitates the greatly increased use of renewable energy generation into a local or national electricity network. The integration of thermal energy storage into the building fabric for retrieval at a later time requires much evaluation of the many competing thermal, physical, and practical considerations such as the profile and magnitude of heat demand, the duration of storage, charging and discharging rate, storage media, space allocation, etc. In this paper, the authors report investigations of thermal storage in building fabric using concrete material and present an evaluation of several factors that impact upon performance including heating pipe layout, heating fluid flow velocity, storage geometry, thermo-physical material properties, and also present an investigation of alternative storage materials and alternative heat transfer fluids. Reducing the heating pipe spacing from 200 mm to 100 mm enhances the stored energy by 25% and high-performance Vacuum Insulation results in heat loss flux of less than 3 W/m2, compared to 22 W/m2 for the more conventional EPS insulation. Dense concrete achieved the greatest storage capacity, relative to medium and light-weight alternatives, although a material thickness of 100 mm required more than 5 hours to charge fully. Layers of 25 mm and 50 mm thickness can be charged in 2 hours, or less, facilitating a fast response that could, aggregated across multiple dwellings, provide significant and valuable reduction in demand from grid-generated electricity in expected periods of high demand and potentially eliminate the need for additional new generating capacity from conventional sources such as gas, coal, or nuclear.

Numerical and Experimental Assessment of a PCM Integrated Solar Chimney

Natural ventilation systems have increasingly been the subject of research due to rising energetic consumption within the building sector and increased environmental awareness. In the last two decades, the mounting concern of greenhouse gas emissions and the need for an efficient passive ventilation system have driven the development of new alternative passive technologies such as ventilated facades, trombe walls or solar chimneys. The objective of the study is the assessment of PCM panels in an in situ solar chimney for the establishment of a numerical model. The PCM integrated solar chimney shows slight performance improvement in terms of mass flow rate and external temperature and outlet temperature difference. An increase of 11.3659 m3/h can be observed during low wind speed periods. Additionally, the surface temperature across the chimney goes beyond 45 °C and allows the activation of PCM panels.

Hepatoprotective Activity of Sharbat Deenar, against Carbon Tetrachloride-Induced Hepatotoxicity in Rats

Polyherbal formulation Sharbat Deenar is a very popular unani medicine in Bangladesh. It is usually used for different kinds of liver disorders. In absence of reliable and inadequate hepatoprotective agents in conventional medicine, the herbal preparations are preferred for liver diseases. The present study was designed to evaluate the hepatoprotective activity of Sharbat Deenar on carbon tetrachloride (CCl4) induced hepatotoxicity in male Long-Evans albino rats. Group I served as normal control and received neither formulation nor carbon tetrachloride. Group II received only CCl4 1mL/kg body weight of rat intraperitoneally for consecutive 14 days. Group III received CCl4 1mL/kg body weight of rat intraperitoneally and Silymarin, in dose 50mg/kg body weight of rat orally. Group IV received CCl4 1mL/kg body weight of rat intraperitoneally and Sharbat Deenar 1mL/kg body weight of rat for the same 14 consecutive days. At the end of the study, hepatoprotective activity was evaluated by the levels of total bilirubin, alanine aminotransferase (ALT), aspartate aminotransferase (AST) and alkaline phosphatase (ALP). Histopathological study of rat liver was also carried out. The results showed that polyherbal formulation Sharbat Deenar exhibited a significant hepatoprotective effect. Such an outcome seems to be the synergistic effect of all ingredients of tested herbal formulation. Although this study suggests that Sharbat Deenar may be used to cure or minimize various liver diseases, it needs further study to attain the clarity of mechanism and safety.

Presentation of a Mix Algorithm for Estimating the Battery State of Charge Using Kalman Filter and Neural Networks

Determination of state of charge (SOC) in today’s world becomes an increasingly important issue in all the applications that include a battery. In fact, estimation of the SOC is a fundamental need for the battery, which is the most important energy storage in Hybrid Electric Vehicles (HEVs), smart grid systems, drones, UPS and so on. Regarding those applications, the SOC estimation algorithm is expected to be precise and easy to implement. This paper presents an online method for the estimation of the SOC of Valve-Regulated Lead Acid (VRLA) batteries. The proposed method uses the well-known Kalman Filter (KF), and Neural Networks (NNs) and all of the simulations have been done with MATLAB software. The NN is trained offline using the data collected from the battery discharging process. A generic cell model is used, and the underlying dynamic behavior of the model has used two capacitors (bulk and surface) and three resistors (terminal, surface, and end), where the SOC determined from the voltage represents the bulk capacitor. The aim of this work is to compare the performance of conventional integration-based SOC estimation methods with a mixed algorithm. Moreover, by containing the effect of temperature, the final result becomes more accurate. 

A Location-Allocation-Routing Model for a Home Health Care Supply Chain Problem

With increasing life expectancy in developed countries, the role of home care services is highlighted by both academia and industrial contributors in Home Health Care Supply Chain (HHCSC) companies. The main decisions in such supply chain systems are the location of pharmacies, the allocation of patients to these pharmacies and also the routing and scheduling decisions of nurses to visit their patients. In this study, for the first time, an integrated model is proposed to consist of all preliminary and necessary decisions in these companies, namely, location-allocation-routing model. This model is a type of NP-hard one. Therefore, an Imperialist Competitive Algorithm (ICA) is utilized to solve the model, especially in large sizes. Results confirm the efficiency of the developed model for HHCSC companies as well as the performance of employed ICA.

Nondestructive Electrochemical Testing Method for Prestressed Concrete Structures

Prestressed concrete is used a lot in infrastructures such as roads or bridges. However, poor grout filling and PC steel corrosion are currently major issues of prestressed concrete structures. One of the problems with nondestructive corrosion detection of PC steel is a plastic pipe which covers PC steel. The insulative property of pipe makes a nondestructive diagnosis difficult; therefore a practical technology to detect these defects is necessary for the maintenance of infrastructures. The goal of the research is a development of an electrochemical technique which enables to detect internal defects from the surface of prestressed concrete nondestructively. Ideally, the measurements should be conducted from the surface of structural members to diagnose non-destructively. In the present experiment, a prestressed concrete member is simplified as a layered specimen to simulate a current path between an input and an output electrode on a member surface. The specimens which are layered by mortar and the prestressed concrete constitution materials (steel, polyethylene, stainless steel, or galvanized steel plates) were provided to the alternating current impedance measurement. The magnitude of an applied electric field was 0.01-volt or 1-volt, and the frequency range was from 106 Hz to 10-2 Hz. The frequency spectrums of impedance, which relate to charge reactions activated by an electric field, were measured to clarify the effects of the material configurations or the properties. In the civil engineering field, the Nyquist diagram is popular to analyze impedance and it is a good way to grasp electric relaxation using a shape of the plot. However, it is slightly not suitable to figure out an influence of a measurement frequency which is reciprocal of reaction time. Hence, Bode diagram is also applied to describe charge reactions in the present paper. From the experiment results, the alternating current impedance method looks to be applicable to the insulative material measurement and eventually prestressed concrete diagnosis. At the same time, the frequency spectrums of impedance show the difference of the material configuration. This is because the charge mobility reflects the variety of substances and also the measuring frequency of the electric field determines migration length of charges which are under the influence of the electric field. However, it could not distinguish the differences of the material thickness and is inferred the difficulties of prestressed concrete diagnosis to identify the amount of an air void or a layer of corrosion product by the technique.

Management of Municipal Solid Waste in Baghdad, Iraq

The deterioration of solid waste management in Baghdad city is considered as a great challenge in terms of human health and environment. Baghdad city is divided into thirteen districts which are distributed on both Tigris River banks. The west bank is Al-Karkh and the east bank is Al-Rusafa. Municipal Solid Waste Management is one of the most complicated problems facing the environment in Iraq. Population growth led to increase waste production and more load of the waste to the limited capacity infrastructure. The problems of municipal solid waste become more serious after the war in 2003. More waste is disposed in underground landfills in Baghdad with little or no concern for both human health and environment. The results showed that the total annually predicted solid waste is increasing for the period 2015-2030. Municipal solid waste in 2030 will be 6,427,773 tons in Baghdad city according to the population growth rate of 2.4%. This increase is estimated to be approximately 30%.

Intelligent Process and Model Applied for E-Learning Systems

E-learning is a developing area especially in education. E-learning can provide several benefits to learners. An intelligent system to collect all components satisfying user preferences is so important. This research presents an approach that it capable to personalize e-information and give the user their needs following their preferences. This proposal can make some knowledge after more evaluations made by the user. In addition, it can learn from the habit from the user. Finally, we show a walk-through to prove how intelligent process work.

Socio-Technical Systems: Transforming Theory into Practice

This paper critically examines the evolution of socio-technical systems theory, its practices, and challenges in system design and development. It examines concepts put forward by researchers focusing on the application of the theory in software engineering. There are various methods developed that use socio-technical concepts based on systems engineering without remarkable success. The main constraint is the large amount of data and inefficient techniques used in the application of the concepts in system engineering for developing time-bound systems and within a limited/controlled budget. This paper critically examines each of the methods, highlight bottlenecks and suggest the way forward. Since socio-technical systems theory only explains what to do, but not how doing it, hence engineers are not using the concept to save time, costs and reduce risks associated with new frameworks. Hence, a new framework, which can be considered as a practical approach is proposed that borrows concepts from soft systems method, agile systems development and object-oriented analysis and design to bridge the gap between theory and practice. The approach will enable the development of systems using socio-technical systems theory to attract/enable the system engineers/software developers to use socio-technical systems theory in building worthwhile information systems to avoid fragilities and hostilities in the work environment.

Emulation of a Wind Turbine Using Induction Motor Driven by Field Oriented Control

This paper concerns with the modeling, simulation, and emulation of a wind turbine emulator for standalone wind energy conversion systems. By using emulation system, we aim to reproduce the dynamic behavior of the wind turbine torque on the generator shaft: it provides the testing facilities to optimize generator control strategies in a controlled environment, without reliance on natural resources. The aerodynamic, mechanical, electrical models have been detailed as well as the control of pitch angle using Fuzzy Logic for horizontal axis wind turbines. The wind turbine emulator consists mainly of an induction motor with AC power drive with torque control. The control of the induction motor and the mathematical models of the wind turbine are designed with MATLAB/Simulink environment. The simulation results confirm the effectiveness of the induction motor control system and the functionality of the wind turbine emulator for providing all necessary parameters of the wind turbine system such as wind speed, output torque, power coefficient and tip speed ratio. The findings are of direct practical relevance.

Spacial Poetic Text throughout Samih al-Qasim's Poetry

For readers, space/place is one of the most significant references to reveal deep significances and indications in modern Arabic poetic texts. Generally, when poets evoke places and/or spaces, they do not mean to refer readers to detailed geographic or physical spaces, but to the symbolic significances and dimensions that those spaces have and through which poets encourage spacial awareness in their readers. Recently, as a result, there has been a great deal of interest in research addressing spacial poetic texts and dimensions in modern Arabic poetry in general and in Palestinian poetry in particular. Samih al-Qasim is one of the most recent prominent Palestinian revolutionary poets. Al-Qasim has published six series of poems that are well known in the Arab world. Although several researchers have studied al-Qasim's poetry, to our knowledge, yet no one has studied the aspect of spacial poetic text in his poetry. Therefore, this paper seeks to fill a gap in the scholarship that has not been addressed up to now. This article aims, not only to demonstrate the presence of spacial poetic text and dimensions throughout al-Qasim's poetry, but also to investigate the purpose for which the poet uses spacial poetic text. Our theory is that the poet, consciously and significantly, uses spacial poetic texts to magnify the Palestinian identity of the Palestinian readers.  Methodologically, we applied a descriptive analytic method, referencing al-Qasim's poetry, addressing spacial poetic texts practically but not theoretically or statistically.

Urban and Rural Children’s Knowledge on Biodiversity in Bizkaia: Tree Identification Skills and Animal and Plant Listing

Biodiversity provides humans with a great range of ecosystemic services; it is therefore an indispensable resource and a legacy to coming generations. However, in the last decades, the increasing exploitation of the Planet has caused a great loss of biodiversity and its acquaintance has decreased remarkably; especially in urbanized areas, due to the decreasing attachment of humans to nature. Yet, the Primary Education curriculum primes the identification of flora and fauna to guarantee the knowledge of children on their surroundings, so that they care for the environment as well as for themselves. In order to produce effective didactic material that meets the needs of both teachers and pupils, it is fundamental to diagnose the current situation. In the present work, the knowledge on biodiversity of 3rd cycle Primary Education students in Biscay (n=98) and its relation to the size of the town/city of their school is discussed. Two tests have been used with such aim: one for tree identification and the other one so that the students enumerated the species of trees and animals they knew. Results reveal that knowledge of students on tree identification is scarce regardless the size of the city/town and of their school. On the other hand, animal species are better known than tree species.

On the Bootstrap P-Value Method in Identifying out of Control Signals in Multivariate Control Chart

In any production process, every product is aimed to attain a certain standard, but the presence of assignable cause of variability affects our process, thereby leading to low quality of product. The ability to identify and remove this type of variability reduces its overall effect, thereby improving the quality of the product. In case of a univariate control chart signal, it is easy to detect the problem and give a solution since it is related to a single quality characteristic. However, the problems involved in the use of multivariate control chart are the violation of multivariate normal assumption and the difficulty in identifying the quality characteristic(s) that resulted in the out of control signals. The purpose of this paper is to examine the use of non-parametric control chart (the bootstrap approach) for obtaining control limit to overcome the problem of multivariate distributional assumption and the p-value method for detecting out of control signals. Results from a performance study show that the proposed bootstrap method enables the setting of control limit that can enhance the detection of out of control signals when compared, while the p-value method also enhanced in identifying out of control variables.

E-Learning Network Support Services: A Comparative Case Study of Australian and United States Universities

This research study examines the current state of support services for e-network practice in an Australian and an American university. It identifies information that will be of assistance to Australian and American universities to improve their existing online programs. The study investigated the two universities using a quantitative methodological approach. Participants were students, lecturers and admins of universities engaged with online courses and learning management systems. The support services for e-network practice variables, namely academic support services, administrative support and technical support, were investigated for e-practice. Evaluations of e-network support service and its sub factors were above average and excellent in both countries, although the American admins and lecturers tended to evaluate this factor higher than others did. Support practice was evaluated higher by all participants of an American university than by Australians. One explanation for the results may be that most suppliers of the Australian university e-learning system were from eastern Asian cultural backgrounds with a western networking support perspective about e-learning.

Performance Evaluation of Parallel Surface Modeling and Generation on Actual and Virtual Multicore Systems

Even though past, current and future trends suggest that multicore and cloud computing systems are increasingly prevalent/ubiquitous, this class of parallel systems is nonetheless underutilized, in general, and barely used for research on employing parallel Delaunay triangulation for parallel surface modeling and generation, in particular. The performances, of actual/physical and virtual/cloud multicore systems/machines, at executing various algorithms, which implement various parallelization strategies of the incremental insertion technique of the Delaunay triangulation algorithm, were evaluated. T-tests were run on the data collected, in order to determine whether various performance metrics differences (including execution time, speedup and efficiency) were statistically significant. Results show that the actual machine is approximately twice faster than the virtual machine at executing the same programs for the various parallelization strategies. Results, which furnish the scalability behaviors of the various parallelization strategies, also show that some of the differences between the performances of these systems, during different runs of the algorithms on the systems, were statistically significant. A few pseudo superlinear speedup results, which were computed from the raw data collected, are not true superlinear speedup values. These pseudo superlinear speedup values, which arise as a result of one way of computing speedups, disappear and give way to asymmetric speedups, which are the accurate kind of speedups that occur in the experiments performed.

Case Study of the Exercise Habits and Aging Anxiety of Taiwanese Insurance Agents

The rapid aging of the population is a common trend in the world. However, the progress of modern medical technology has increased the average life expectancy. The global population structure has changed dramatically, and the elderly population has risen rapidly. In the face of rapid population growth, it must be noted issues of the aging population must face up to, which are the physiological, psychological, and social problems associated with aging. This study aims to investigate how insurance agents are actively dealing with an aging society, their own aging anxiety, and their exercise habits. Purposive sampling was the sampling method of this study, a total of 204 respondents were surveyed and 204 valid surveys were returned. The returned valid ratio was 100%. Statistical method included descriptive statistics, t-test, and one-way ANOVA. The results of the study found that the insurance agent’s age, seniority, exercise habits to aging anxiety are significantly different.

Assessment of Path Loss Prediction Models for Wireless Propagation Channels at L-Band Frequency over Different Micro-Cellular Environments of Ekiti State, Southwestern Nigeria

The design of accurate and reliable mobile communication systems depends majorly on the suitability of path loss prediction methods and the adaptability of the methods to various environments of interest. In this research, the results of the adaptability of radio channel behavior are presented based on practical measurements carried out in the 1800 MHz frequency band. The measurements are carried out in typical urban, suburban and rural environments in Ekiti State, Southwestern part of Nigeria. A total number of seven base stations of MTN GSM service located in the studied environments were monitored. Path loss and break point distances were deduced from the measured received signal strength (RSS) and a practical path loss model is proposed based on the deduced break point distances. The proposed two slope model, regression line and four existing path loss models were compared with the measured path loss values. The standard deviations of each model with respect to the measured path loss were estimated for each base station. The proposed model and regression line exhibited lowest standard deviations followed by the Cost231-Hata model when compared with the Erceg Ericsson and SUI models. Generally, the proposed two-slope model shows closest agreement with the measured values with a mean error values of 2 to 6 dB. These results show that, either the proposed two slope model or Cost 231-Hata model may be used to predict path loss values in mobile micro cell coverage in the well-considered environments. Information from this work will be useful for link design of microwave band wireless access systems in the region.

Appropriate Technology: Revisiting the Movement in Developing Countries for Sustainability

The economic growth of any nation is steered and dependent on innovation in technology. It can be preferably argued that technology has enhanced the quality of life. Technology is linked both with an economic and a social structure. But there are some parts of the world or communities which are yet to reap the benefits of technological innovation. Business and organizations are now well equipped with cutting-edge innovations that improve the firm performance and provide them with a competitive edge, but rarely does it have a positive impact on any community which is weak and marginalized. In recent times, it is observed that communities are actively handling social or ecological issues with the help of indigenous technologies. Thus, "Appropriate Technology" comes into the discussion, which is quite prevalent in the rural third world. Appropriate technology grew as a movement in the mid-1970s during the energy crisis, but it lost its stance in the following years when people started it to describe it as an inferior technology or dead technology. Basically, there is no such technology which is inferior or sophisticated for a particular region. The relevance of appropriate technology lies in penetrating technology into a larger and weaker section of community where the “Bottom of the pyramid” can pay for technology if they find the price is affordable. This is a theoretical paper which primarily revolves around how appropriate technology has faded and again evolved in both developed and developing countries. The paper will try to focus on the various concepts, history and challenges faced by the appropriate technology over the years. Appropriate technology follows a documented approach but lags in overall design and diffusion. Diffusion of technology into the poorer sections of community remains unanswered until the present time. Appropriate technology is multi-disciplinary in nature; therefore, this openness allows having a varied working model for different problems. Appropriate technology is a friendly technology that seeks to improve the lives of people in a constraint environment by providing an affordable and sustainable solution. Appropriate technology needs to be defined in the era of modern technological advancement for sustainability.

Assessment of Drug Delivery Systems from Molecular Dynamic Perspective

In this study, we developed and simulated nano-drug delivery systems efficacy in compare to free drug prescription. Computational models can be utilized to accelerate experimental steps and control the experiments high cost. Molecular dynamics simulation (MDS), in particular NAMD was utilized to better understand the anti-cancer drug interaction with cell membrane model. Paclitaxel (PTX) and dipalmitoylphosphatidylcholine (DPPC) were selected for the drug molecule and as a natural phospholipid nanocarrier, respectively. This work focused on two important interaction parameters between molecules in terms of center of mass (COM) and van der Waals interaction energy. Furthermore, we compared the simulation results of the PTX interaction with the cell membrane and the interaction of DPPC as a nanocarrier loaded by the drug with the cell membrane. The molecular dynamic analysis resulted in low energy between the nanocarrier and the cell membrane as well as significant decrease of COM amount in the nanocarrier and the cell membrane system during the interaction. Thus, the drug vehicle showed notably better interaction with the cell membrane in compared to free drug interaction with the cell membrane.

Similarity Based Membership of Elements to Uncertain Concept in Information System

The process of determining the degree of membership for an element to an uncertain concept has been found in many ways, using equivalence and symmetry relations in information systems. In the case of similarity, these methods did not take into account the degree of symmetry between elements. In this paper, we use a new definition for finding the membership based on the degree of symmetry. We provide an example to clarify the suggested methods and compare it with previous methods. This method opens the door to more accurate decisions in information systems.