Swarm Navigation in a Complex Environment

This paper proposes a solution to the motion planning and control problem of car-like mobile robots which is required to move safely to a designated target in a priori known workspace cluttered with swarm of boids exhibiting collective emergent behaviors. A generalized algorithm for target convergence and swarm avoidance is proposed that will work for any number of swarms. The control laws proposed in this paper also ensures practical stability of the system. The effectiveness of the proposed control laws are demonstrated via computer simulations of an emergent behavior.

A Logic Based Framework for Planning for Mobile Agents

The objective of the paper is twofold. First, to develop a formal framework for planning for mobile agents. A logical language based on a temporal logic is proposed that can express a type of tasks which often arise in network management. Second, to design a planning algorithm for such tasks. The aim of this paper is to study the importance of finding plans for mobile agents. Although there has been a lot of research in mobile agents, not much work has been done to incorporate planning ideas for such agents. This paper makes an attempt in this direction. A theoretical study of finding plans for mobile agents is undertaken. A planning algorithm (based on the paradigm of mobile computing) is proposed and its space, time, and communication complexity is analyzed. The algorithm is illustrated by working out an example in detail.

Analytical solution of Gas Flow Through a Micro-Nano Porous Media by Homotopy Perturbation method

In this paper, we have applied the homotopy perturbation method (HPM) for obtaining the analytical solution of unsteady flow of gas through a porous medium and we have also compared the findings of this research with some other analytical results. Results showed a very good agreement between results of HPM and the numerical solutions of the problem rather than other analytical solutions which have previously been applied. The results of homotopy perturbation method are of high accuracy and the method is very effective and succinct.

Collaborative Web Platform for Rich Media Educational Material Creation

This paper describes a platform that faces the main research areas for e-learning educational contents. Reusability tackles the possibility to use contents in different courses reducing costs and exploiting available data from repositories. In our approach the production of educational material is based on templates to reuse learning objects. In terms of interoperability the main challenge lays on reaching the audience through different platforms. E-learning solution must track social consumption evolution where nowadays lots of multimedia contents are accessed through the social networks. Our work faces it by implementing a platform for generation of multimedia presentations focused on the new paradigm related to social media. The system produces videos-courses on top of web standard SMIL (Synchronized Multimedia Integration Language) ready to be published and shared. Regarding interfaces it is mandatory to satisfy user needs and ease communication. To overcome it the platform deploys virtual teachers that provide natural interfaces while multimodal features remove barriers to pupils with disabilities.

On Solving Single-Period Inventory Model under Hybrid Uncertainty

Inventory decisional environment of short life-cycle products is full of uncertainties arising from randomness and fuzziness of input parameters like customer demand requiring modeling under hybrid uncertainty. Prior inventory models incorporating fuzzy demand have unfortunately ignored stochastic variation of demand. This paper determines an unambiguous optimal order quantity from a set of n fuzzy observations in a newsvendor inventory setting in presence of fuzzy random variable demand capturing both fuzzy perception and randomness of customer demand. The stress of this paper is in providing solution procedure that attains optimality in two steps with demand information availability in linguistic phrases leading to fuzziness along with stochastic variation. The first step of solution procedure identifies and prefers one best fuzzy opinion out of all expert opinions and the second step determines optimal order quantity from the selected event that maximizes profit. The model and solution procedure is illustrated with a numerical example.

Design and Development of Pico-hydro Generation System for Energy Storage Using Consuming Water Distributed to Houses

This paper describes the design and development of pico-hydro generation system using consuming water distributed to houses. Water flow in the domestic pipes has kinetic energy that potential to generate electricity for energy storage purposes in addition to the routine activities such as laundry, cook and bathe. The inherent water pressure and flow inside the pipe from utility-s main tank that used for those usual activities is also used to rotate small scale hydro turbine to drive a generator for electrical power generation. Hence, this project is conducted to develop a small scale hydro generation system using consuming water distributed to houses as an alternative electrical energy source for residential use.

Identification of MIMO Systems Using Neuro-Fuzzy Models with a Shuffled Frog Leaping Algorithm

In this paper, a TSK-type Neuro-fuzzy Inference System that combines the features of fuzzy sets and neural networks has been applied for the identification of MIMO systems. The procedure of adapting parameters in TSK model employs a Shuffled Frog Leaping Algorithm (SFLA) which is inspired from the memetic evolution of a group of frogs when seeking for food. To demonstrate the accuracy and effectiveness of the proposed controller, two nonlinear systems have been considered as the MIMO plant, and results have been compared with other learning methods based on Particle Swarm Optimization algorithm (PSO) and Genetic Algorithm (GA).

Numerical Simulation of Cavitation and Aeration in Discharge Gated Tunnel of a Dam Based on the VOF Method

Cavitation, usually known as a destructive phenomenon, involves turbulent unsteady two-phase flow. Having such features, cavitating flows have been turned to a challenging topic in numerical studies and many researches are being done for better understanding of bubbly flows and proposing solutions to reduce its consequent destructive effects. Aeration may be regarded as an effective protection against cavitation erosion in many hydraulic structures, like gated tunnels. The paper concerns numerical simulation of flow in discharge gated tunnel of a dam using ing RNG k -ε model coupled with the volume of fluid (VOF) method and the zone which is susceptible of cavitation inception in the tunnel is predicted. In the second step, a vent is considered in the mentioned zone for aeration and the numerical simulation is done again to study the effects of aeration. The results show that aeration is an impressively useful method to exclude cavitation in mentioned tunnels.

Intelligent Condition Monitoring Systems for Unmanned Aerial Vehicle Robots

This paper presents the application of Intelligent Techniques to the various duties of Intelligent Condition Monitoring Systems (ICMS) for Unmanned Aerial Vehicle (UAV) Robots. These Systems are intended to support these Intelligent Robots in the event of a Fault occurrence. Neural Networks are used for Diagnosis, whilst Fuzzy Logic is intended for Prognosis and Remedy. The ultimate goals of ICMS are to save large losses in financial cost, time and data.

Interactive PTZ Camera Control System Using Wii Remote and Infrared Sensor Bar

This paper proposes an alternative control mechanism for an interactive Pan/Tilt/Zoom (PTZ) camera control system. Instead of using a mouse or a joystick, the proposed mechanism utilizes a Nintendo Wii remote and infrared (IR) sensor bar. The Wii remote has buttons that allows the user to control the movement of a PTZ camera through Bluetooth connectivity. In addition, the Wii remote has a built-in motion sensor that allows the user to give control signals to the PTZ camera through pitch and roll movement. A stationary IR sensor bar, placed at some distance away opposite the Wii remote, enables the detection of yaw movement. In addition, the Wii remote-s built-in IR camera has the ability to detect its spatial position, and thus generates a control signal when the user moves the Wii remote. Some experiments are carried out and their performances are compared with an industry-standard PTZ joystick.

Rotor Flow Analysis using Animplicit Harmonic Balance Method

This paper is an extension of a previous work where a diagonally implicit harmonic balance method was developed and applied to simulate oscillatory motions of pitching airfoil and wing. A more detailed study on the accuracy, convergence, and the efficiency of the method is carried out in the current paperby varying the number of harmonics in the solution approximation. As the main advantage of the method is itsusage for the design optimization of the unsteady problems, its application to more practical case of rotor flow analysis during forward flight is carried out and compared with flight test data and time-accurate computation results.

Density Clustering Based On Radius of Data (DCBRD)

Clustering algorithms are attractive for the task of class identification in spatial databases. However, the application to large spatial databases rises the following requirements for clustering algorithms: minimal requirements of domain knowledge to determine the input parameters, discovery of clusters with arbitrary shape and good efficiency on large databases. The well-known clustering algorithms offer no solution to the combination of these requirements. In this paper, a density based clustering algorithm (DCBRD) is presented, relying on a knowledge acquired from the data by dividing the data space into overlapped regions. The proposed algorithm discovers arbitrary shaped clusters, requires no input parameters and uses the same definitions of DBSCAN algorithm. We performed an experimental evaluation of the effectiveness and efficiency of it, and compared this results with that of DBSCAN. The results of our experiments demonstrate that the proposed algorithm is significantly efficient in discovering clusters of arbitrary shape and size.

Investigation into Heterotrophic Activities and Algal Biomass in Surface Flow Stormwater Wetlands

Stormwater wetlands have been mainly designed in an empirical approach for water quality improvement, with little quantitative understanding of the internal microbial processes. This study investigated into heterotrophic bacterial production rate, heterotrophic bacterial mineralization percentage, and algal biomass in hypertrophic and eutrophic surface flow stormwater wetlands. Compared to a nearby wood leachate treatment wetland, the stormwater wetlands had much higher chlorophyll-a concentrations. The eutrophic stormwater wetland had improved water quality, whereas the hypertrophic stormwater wetland had degraded water quality. Heterotrophic bacterial activities in water were limited in the stormwater wetlands due to competition of algal growth for nutrients. The relative contribution of biofilms to the overall heterotrophic activities was higher in the stormwater wetlands than that in the wood leachate treatment wetland.

Monitoring of Dielectric Losses and Use of Ferrofluids for Bushing Cooling

At present, the tendency to implement the conditionbased maintenance (CBM), which allows the optimization of the expenses for equipment monitoring, is more and more evident; also, the transformer substations with remote monitoring are increasingly used. This paper reviews all the advantages of the on-line monitoring and presents an equipment for on-line monitoring of bushings, which is the own contribution of specialists who are the authors of this paper. The paper presents a study of the temperature field, using the finite element method. For carrying out this study, the 3D modelling of the above mentioned bushing was performed. The analysis study is done taking into account the extreme thermal stresses, focusing at the level of the first cooling wing section of the ceramic insulator. This fact enables to justify the tanδ variation in time, depending on the transformer loading and the environmental conditions. With a view to reducing the variation of dielectric losses in bushing insulation, the use of ferrofuids instead of mineral oils is proposed.

Ovshinsky Effect by Quantum Mechanics

Ovshinsky initiated scientific research in the field of amorphous and disordered materials that continues to this day. The Ovshinsky Effect where the resistance of thin GST films is significantly reduced upon the application of low voltage is of fundamental importance in phase-change - random access memory (PC-RAM) devices.GST stands for GdSbTe chalcogenide type glasses.However, the Ovshinsky Effect is not without controversy. Ovshinsky thought the resistance of GST films is reduced by the redistribution of charge carriers; whereas, others at that time including many PC-RAM researchers today argue that the GST resistance changes because the GST amorphous state is transformed to the crystalline state by melting, the heat supplied by external heaters. In this controversy, quantum mechanics (QM) asserts the heat capacity of GST films vanishes, and therefore melting cannot occur as the heat supplied cannot be conserved by an increase in GST film temperature.By precluding melting, QM re-opens the controversy between the melting and charge carrier mechanisms. Supporting analysis is presented to show that instead of increasing GST film temperature, conservation proceeds by the QED induced creation of photons within the GST film, the QED photons confined by TIR. QED stands for quantum electrodynamics and TIR for total internal reflection. The TIR confinement of QED photons is enhanced by the fact the absorbedheat energy absorbed in the GST film is concentrated in the TIR mode because of their high surface to volume ratio. The QED photons having Planck energy beyond the ultraviolet produce excitons by the photoelectric effect, the electrons and holes of which reduce the GST film resistance.

Transient Heat Transfer Model for Car Body Primer Curing

A transient heat transfer mathematical model for the prediction of temperature distribution in the car body during primer baking has been developed by considering the thermal radiation and convection in the furnace chamber and transient heat conduction governing equations in the car framework. The car cockpit is considered like a structure with six flat plates, four vertical plates representing the car doors and the rear and front panels. The other two flat plates are the car roof and floor. The transient heat conduction in each flat plate is modeled by the lumped capacitance method. Comparison with the experimental data shows that the heat transfer model works well for the prediction of thermal behavior of the car body in the curing furnace, with deviations below 5%.

The Effect of Increment in Simulation Samples on a Combined Selection Procedure

Statistical selection procedures are used to select the best simulated system from a finite set of alternatives. In this paper, we present a procedure that can be used to select the best system when the number of alternatives is large. The proposed procedure consists a combination between Ranking and Selection, and Ordinal Optimization procedures. In order to improve the performance of Ordinal Optimization, Optimal Computing Budget Allocation technique is used to determine the best simulation lengths for all simulation systems and to reduce the total computation time. We also argue the effect of increment in simulation samples for the combined procedure. The results of numerical illustration show clearly the effect of increment in simulation samples on the proposed combination of selection procedure.

Designing a Novel General Sorting Network Constructor Using Artificial Evolution

A method is presented for the construction of arbitrary even-input sorting networks exhibiting better properties than the networks created using a conventional technique of the same type. The method was discovered by means of a genetic algorithm combined with an application-specific development. Similarly to human inventions in the area of theoretical computer science, the evolved invention was analyzed: its generality was proven and area and time complexities were determined.

Electromagnetic Flow Meter Efficiency

A study of electromagnetic flow meter is presented in the paper. Comparison has been made between the analytical and the numerical results by the use of FEM numerical analysis (Quick Field 5.6) for determining polarization voltage through the circle cross section of the polarization transducer. Exciting and geometrical parameters increasing its effectiveness has been examined. The aim is to obtain maximal output signal. The investigations include different variants of the magnetic flux density distribution around the tube: homogeneous field of magnitude Bm, linear distribution with maximal value Bm and trapezium distribution conserving the same exciting magnetic energy as the homogeneous field.

Numerical Solution of the Equations of Salt Diffusion into the Potato Tissues

Fick's second law equations for unsteady state diffusion of salt into the potato tissues were solved numerically. The set of equations resulted from implicit modeling were solved using Thomas method to find the salt concentration profiles in solid phase. The needed effective diffusivity and equilibrium distribution coefficient were determined experimentally. Cylindrical samples of potato were infused with aqueous NaCl solutions of 1-3% concentrations, and variations in salt concentrations of brine were determined over time. Solute concentrations profiles of samples were determined by measuring salt uptake of potato slices. For the studied conditions, equilibrium distribution coefficients were found to be dependent on salt concentrations, whereas the effective diffusivity was slightly affected by brine concentration.