Adsorption and Electrochemical Regeneration for Industrial Wastewater Treatment

Graphite intercalation compound (GIC) has been demonstrated to be a useful, low capacity and rapid adsorbent for the removal of organic micropollutants from water. The high electrical conductivity and low capacity of the material lends itself to electrochemical regeneration. Following electrochemical regeneration, equilibrium loading under similar conditions is reported to exceed that achieved by the fresh adsorbent. This behavior is reported in terms of the regeneration efficiency being greater than 100%. In this work, surface analysis techniques are employed to investigate the material in three states: ‘Fresh’, ‘Loaded’ and ‘Regenerated’. ‘Fresh’ GIC is shown to exhibit a hydrogen and oxygen rich surface layer approximately 150 nm thick. ‘Loaded’ GIC shows a similar but slightly thicker surface layer (approximately 370 nm thick) and significant enhancement in the hydrogen and oxygen abundance extending beyond 600 nm from the surface. 'Regenerated’ GIC shows an oxygen rich layer, slightly thicker than the fresh case at approximately 220 nm while showing a very much lower hydrogen enrichment at the surface. Results demonstrate that while the electrochemical regeneration effectively removes the phenol model pollutant, it also oxidizes the exposed carbon surface. These results may have a significant impact on the estimation of adsorbent life.

The Role of Social Civil Competencies in Organizational Performance

The European Union supports social and civil competencies as being a core element to develop sustainability of organizations, people and regions. These competencies are fundamental for the well-being of the community because they include interpersonal, intrapersonal as well as their civil, active and democratic participation in organizations. The combination of these competencies reveals the organizational socio-emotional maturity and allows relevant levels of performance. It also allows the development of various capitals, namely, human, structural, relational and social, with direct influence on performance. But along this path, the emotional aspect has not been valued as a capital, given that contemporary society is based on knowledge capital and is flooded with information viewed as a capital. The present study, based on the importance of these socio-emotional capitals, aims to show that the competencies of cooperation, interpersonal understanding, empathy, kindness, ability to listen, and tolerance, to mention a few, are strategic in consolidating knowledge within organizations. This implies that the humanizing processes, both inside and outside the organizations, are revitalized. The question is how to go about doing this and its implementation; as well as, where to begin and which guidelines to take on. These are the foci that guide the present study, bearing in mind the directions of the knowledge economy.

Autohydrolysis Treatment of Olive Cake to Extract Fructose and Sucrose

The production of olive oil is considered as one of the most important agri-food industries. However, some of the by-products generated in the process are potential pollutants and cause environmental problems. Consequently, the management of these by-products is currently considered as a challenge for the olive oil industry. In this context, several technologies have been developed and tested. In this sense, the autohydrolysis of these by-products could be considered as a promising technique. Therefore, this study focused on autohydrolysis treatments of a solid residue from the olive oil industry denominated olive cake. This one comes from the olive pomace extraction with hexane. Firstly, a water washing was carried out to eliminate the water soluble compounds. Then, an experimental design was developed for the autohydrolysis experiments carried out in the hydrothermal pressure reactor. The studied variables were temperature (30, 60 and 90 ºC) and time (30, 60, 90 min). On the other hand, aliquots of liquid obtained fractions were analysed by HPLC to determine the fructose and sucrose contents present in the liquid fraction. Finally, the obtained results of sugars contents and the yields of the different experiments were fitted to a neuro-fuzzy and to a polynomial model.

Implementation of a Low-Cost Instrumentation for an Open Cycle Wind Tunnel to Evaluate Pressure Coefficient

Wind tunnel experiments for aerodynamic profiles display numerous advantages, such as: clean steady laminar flow, controlled environmental conditions, streamlines visualization, and real data acquisition. However, the experiment instrumentation usually is expensive, and hence, each test implies a incremented in design cost. The aim of this work is to select and implement a low-cost static pressure data acquisition system for a NACA 2412 airfoil in an open cycle wind tunnel. This work compares wind tunnel experiment with Computational Fluid Dynamics (CFD) simulation and parametric analysis. The experiment was evaluated at Reynolds of 1.65 e5, with increasing angles from -5° to 15°. The comparison between the approaches show good enough accuracy, between the experiment and CFD, additional parametric analysis results differ widely from the other methods, which complies with the lack of accuracy of the lateral approach due its simplicity.

Emulation of a Wind Turbine Using Induction Motor Driven by Field Oriented Control

This paper concerns with the modeling, simulation, and emulation of a wind turbine emulator for standalone wind energy conversion systems. By using emulation system, we aim to reproduce the dynamic behavior of the wind turbine torque on the generator shaft: it provides the testing facilities to optimize generator control strategies in a controlled environment, without reliance on natural resources. The aerodynamic, mechanical, electrical models have been detailed as well as the control of pitch angle using Fuzzy Logic for horizontal axis wind turbines. The wind turbine emulator consists mainly of an induction motor with AC power drive with torque control. The control of the induction motor and the mathematical models of the wind turbine are designed with MATLAB/Simulink environment. The simulation results confirm the effectiveness of the induction motor control system and the functionality of the wind turbine emulator for providing all necessary parameters of the wind turbine system such as wind speed, output torque, power coefficient and tip speed ratio. The findings are of direct practical relevance.

Prototype of an Interactive Toy from Lego Robotics Kits for Children with Autism

This paper is the development of a concept of the man/robot interaction. More accurately in developing of an autistic child that have more troubles with interaction, here offers an efficient solution, even though simple; however, less studied for this public. This concept is based on code applied thought out the Lego NXT kit, built for the interpretation of the robot, thereby can create this interaction in a constructive way for children suffering with Autism.

Use of Semantic Networks as Learning Material and Evaluation of the Approach by Students

This article first summarizes reasons why current approaches supporting Open Learning and Distance Education need to be complemented by tools permitting lecturers, researchers and students to cooperatively organize the semantic content of Learning related materials (courses, discussions, etc.) into a fine-grained shared semantic network. This first part of the article also quickly describes the approach adopted to permit such a collaborative work. Then, examples of such semantic networks are presented. Finally, an evaluation of the approach by students is provided and analyzed.

Collaborative Web Platform for Rich Media Educational Material Creation

This paper describes a platform that faces the main research areas for e-learning educational contents. Reusability tackles the possibility to use contents in different courses reducing costs and exploiting available data from repositories. In our approach the production of educational material is based on templates to reuse learning objects. In terms of interoperability the main challenge lays on reaching the audience through different platforms. E-learning solution must track social consumption evolution where nowadays lots of multimedia contents are accessed through the social networks. Our work faces it by implementing a platform for generation of multimedia presentations focused on the new paradigm related to social media. The system produces videos-courses on top of web standard SMIL (Synchronized Multimedia Integration Language) ready to be published and shared. Regarding interfaces it is mandatory to satisfy user needs and ease communication. To overcome it the platform deploys virtual teachers that provide natural interfaces while multimodal features remove barriers to pupils with disabilities.