Microstructural Evolution of an Interface Region in a Nickel-Based Superalloy Joint Produced by Direct Energy Deposition

Microstructure analysis of additively manufactured (AM) materials is an important step in understanding the interrelationship between mechanical properties and materials performance. Literature on the effect of a laser-based AM process parameters on the microstructure in the substrate-deposit interface is limited. The interface region, the adjoining area of substrate and deposit, is characterized by the presence of the fusion zone (FZ) and heat affected zone (HAZ) experiencing rapid thermal gyrations resulting in thermal induced transformations. Inconel 718 was utilized as a work material for both the substrate and deposit. Three blocks of Inconel 718 material were deposited by Direct Energy Deposition (DED) using three different laser powers, 550W, 750W and 950W, respectively. A coupled thermo-mechanical transient approach was utilized to correlate temperature history to the evolution of microstructure. Thermal history of the deposition process was monitored with the thermocouples installed inside the substrate material. Interface region of the blocks were analysed with Optical Microscopy (OM) and Scanning Electron Microscopy (SEM) including electron back-scattered diffraction (EBSD) technique. Laser power was found to influence the dissolution of intermetallic precipitated phases in the substrate and grain growth in the interface region. Microstructure and thermal history data were utilized to draw conclusive comparisons between the investigated process parameters.

Properties of Bacterial Nanocellulose for Scenic Arts

Kombucha (a symbiotic culture of bacteria and yeast) produces material capable of acquiring multiple shapes and textures that change significantly under different environment or temperature variations (e.g., when it is exposed to wet conditions), properties that may be explored in the scenic industry. This paper presents an analysis of its specific characteristics, exploring them as a non-conventional material for arts and performance. Costume Design uses surfaces as a powerful way of expression to represent concepts and stories; it may apply the unique features of nano bacterial cellulose (NBC) as assets in this artistic context. A mix of qualitative and quantitative (interventionist) methodology approaches were used such as review of relevant literature to deepen knowledge on the research topic (crossing bibliography from different fields of studies: biology, art, costume design, etc.); as well as descriptive methods: laboratorial experiments, document quantities, observation to identify material properties and possibilities used to express a multiple narrative ideas, concepts and feelings. The results confirmed that NBC is an interactive and versatile material viable to be used in an alternative scenic context; its unique aesthetic and performative qualities, which change in contact to moisture, are resources that can be used to show a visual and poetic impact on stage.

Public-Private Partnership Transportation Projects: An Exploratory Study

When public transportation projects were delivered through design-bid-build and later design-build, governments found a serious issue: inadequate funding. With population growth, governments began to develop new arrangements in which the private sectors were involved to cut the financial burden. This arrangement, Public-Private Partnership (PPP), has its own risks; however, performance outputs can motivate or discourage its use. On top of such output are time and budget, which can be affected by the type of project delivery methods. Project completion within or ahead of schedule as well as within or under budget is among any owner’s objectives. With a higher application of PPP in the highway industry in the US and insufficient research, the current study addresses the schedule and cost performance of PPP highway projects and determines which one outperforms the other. To meet this objective, after collecting performance data of all PPP projects, schedule growth and cost growth are calculated, and finally, statistical analysis is conducted to evaluate the PPP performance. The results show that PPP highway projects on average have saved time and cost; however, the main benefit is a faster delivery rather than an under-budget completion. This study can provide better insights to understand PPP highways’ performance and assist practitioners in applying PPP for transportation projects with the opportunity to save time and cost.

Director Compensation, CEO Duality, State Ownership, and Firm Performance in China: Proof from Panel Data of Publicly Listed Enterprises from 1999 to 2020

This paper offered the primary methodical proof on how director remuneration related to enterprise earnings in listed firms in China in light of most evidence focusing on cross-sectional data or data in a short span of time. Using full economic and business panel data on China’s publicly listed enterprise from 1999 to 2020 over two decades in the China Stock Market & Accounting Research database, we found statistically significant positive associations between director pay and firm performance in privately owned firms over this period, supporting the agency theory. In contrast, among the state-owned enterprises, there was a reverse relation between director compensation and firm financial performance, contributing to the existing literature. But the results also revealed that state-owned enterprises financially performed as well as private enterprises. Such findings suggested that state ownership might line up officials’ career incentives with party prime concern rather than pecuniary incentives. Also, CEO duality enhanced firm performance. As such, allegiance to the party and possible advancement to an upper-level political position would motivate company directors in state-owned enterprises. On the other hand, directors in privately owned enterprises might be motivated by monetary incentives. In addition, a statistical regression model was proposed and tested to get the results of the performance of state-owned enterprises. Finally, some suggestions were made about how to improve the institutional management of government-owned corporations in China.

Truck Routing Problem Considering Platooning and Drivers’ Breaks

Truck platooning refers to a convoy of digitally connected automated trucks traveling safely with a small inter-vehicle gap. It has been identified as one of the most promising and applicable technologies towards automated and sustainable freight transportation. Although truck platooning delivers significant energy-saving benefits, it cannot be realized without good coordination of drivers’ shifts to lead the platoons subject to their mandatory breaks. Therefore, this study aims to route a fleet of trucks to their destinations using the least amount of fuel by maximizing platoon opportunities under the regulations of drivers’ mandatory breaks. We formulate this platoon coordination problem as a mixed-integer linear programming problem and solve it by CPLEX. Numerical experiments are conducted to demonstrate the effectiveness and efficiency of our proposed model. In addition, we also explore the impacts of drivers’ compulsory breaks on the fuel-savings performance. The results show a slight increase in the total fuel costs in the presence of drivers’ compulsory breaks, thanks to driving-while-resting benefit provided for the trailing trucks. This study may serve as a guide for the operators of automated freight transportation.

Ethnocentrism: The Hidden Adversary of Effective Global Leadership

With the industrial revolution, global leaders must more rapidly become knowledgeable of and develop essential cross-cultural competencies to be effective. Ethnocentrism represents a hidden barrier of effective leadership and must be acknowledged and addressed proactively by global leaders. The article examines the impact of ethnocentrism in four critical areas (leadership strategy, cross-cultural competencies, intercultural communication, and adaptation to international contexts) and argues that by developing cross-cultural competencies, leaders might naturally reduce ethnocentrism levels. This paper will also offer few examples to support international managers in understanding how ethnocentrism can affect performance.

Automated Driving Deep Neural Network Model Accuracy and Performance Assessment in a Simulated Environment

The evolution and integration of automated vehicles have become more and more tangible in recent years. State-of-the-art technological advances in the field of camera-based Artificial Intelligence (AI) and computer vision greatly favor the performance and reliability of Advanced Driver Assistance System (ADAS), leading to a greater knowledge of vehicular operation and resembling the human behaviour. However, the exclusive use of this technology still seems insufficient to control the vehicular operation at 100%. To reveal the degree of accuracy of the current camera-based automated driving AI modules, this paper studies the structure and behavior of one of the main solutions in a controlled testing environment. The results obtained clearly outline the lack of reliability when using exclusively the AI model in the perception stage, thereby entailing using additional complementary sensors to improve its safety and performance.

Efficient High Fidelity Signal Reconstruction Based on Level Crossing Sampling

This paper proposes strategies in level crossing (LC) sampling and reconstruction that provide high fidelity signal reconstruction for speech signals; these strategies circumvent the problem of exponentially increasing number of samples as the bit-depth is increased and hence are highly efficient. Specifically, the results indicate that the distribution of the intervals between samples is one of the key factors in the quality of signal reconstruction; including samples with short intervals does not improve the accuracy of the signal reconstruction, whilst samples with large intervals lead to numerical instability. The proposed sampling method, termed reduced conventional level crossing (RCLC) sampling, exploits redundancy between samples to improve the efficiency of the sampling without compromising performance. A reconstruction technique is also proposed that enhances the numerical stability through linear interpolation of samples separated by large intervals. Interpolation is demonstrated to improve the accuracy of the signal reconstruction in addition to the numerical stability. We further demonstrate that the RCLC and interpolation methods can give useful levels of signal recovery even if the average sampling rate is less than the Nyquist rate.

Creating a Profound Sense of Comfort to Stimulate Workers’ Innovation and Productivity: Exploring Research and Case Study Applications

Purpose: The aim of this research is to explore and discuss innovation-workspaces, and how the design of the workspace has the potential to boost the work process and encourage employees’ satisfaction, leading to inventive and creative results. Background: The relationship between the workers and the work environment has a strong potential to enhance work outcomes when optimized for work goals. Innovation-work environment can benefit employees’ satisfaction, health, and performance. To understand this complex relationship, this research explores innovation-work environments. Methods: A review of 26 peer-reviewed articles, seven books, and 23 companies’ websites was conducted; in addition, five case studies were analyzed to deduce appropriate examples for the study. Results: The research found all successful five innovation environments focused on two aspects: first, workers’ satisfaction and comfort, which includes a focus on physical, functional, and psychological comfort; second aspect, all five centers were diverse work environments that addressed workers’ needs, design for individuals and teamwork, design for workers’ freedom, and design for increasing interaction. Conclusion: understanding individuals' needs and creating work environments that enhance interaction between workers and with the space are key aspects of successful innovation-work environments.

Comparative Analysis between Different Proposed Responsive Façade Designs for Reducing the Solar Radiation on the West Façade in the Hot Arid Region

Designing buildings which are sustainable and can control and reduce the solar radiation penetrated from the building facades is such an architectural turn. One of the most important methods of saving energy in a building is carefully designing its facade. Building’s facade is one of the most significant contributors to the energy budget as well as the comfort parameters of a building. Responsive architecture adapts to the surrounding environment causing alteration in the envelope configuration to perform in a more effectively way. One of the objectives of the responsive facades is to protect the building’s users from the external environment and achieving comfortable indoor environment. Solar radiation is one of the aspects that affects the comfortable indoor environment, as well as affects the energy consumption consumed by the HVAC systems for maintaining the indoor comfortable conditions. The aim of the paper is introducing and comparing between four different proposed responsive façade designs in terms of solar radiation reduction on the west façade of a building located in the hot arid region. In addition, the paper highlights the reducing amount of the solar radiation for each proposed responsive facades on the west façade. At the end of the paper, a proposal is introduced which combines the four different axis of movements which reduces the solar radiation the most. Moreover, the paper highlights the definition and aim of the responsive architecture, as well as the focusing on the solar radiation aspect in the hot arid zones. Besides, the paper analyzes an international responsive façade building in Essen, Germany, focusing on the type of responsive facades, angle of rotation, mechanism of movement and the effect of the responsive facades on the building’s performance.

Evaluating the Performance of Offensive Lineman in the NFL

In this paper we objectively measure the performance of an individual offensive lineman in the NFL. The existing literature proposes various measures that rely on subjective assessments of game film, but has yet to develop an objective methodology to evaluate performance. Using a variety of statistics related to an offensive lineman’s performance, we develop a framework to objectively analyze the overall performance of an individual offensive lineman and determine specific linemen who are overvalued or undervalued relative to their salary. We identify eight players across the 2013-2014 and 2014-2015 NFL seasons that are considered to be overvalued or undervalued and corroborate the results with existing metrics that are based on subjective evaluation. To the best of our knowledge, the techniques set forth in this work have not been utilized in previous works to evaluate the performance of NFL players at any position, including offensive linemen.

Cirrhosis Mortality Prediction as Classification Using Frequent Subgraph Mining

In this work, we use machine learning and data analysis techniques to predict the one-year mortality of cirrhotic patients. Data from 2,322 patients with liver cirrhosis are collected at a single medical center. Different machine learning models are applied to predict one-year mortality. A comprehensive feature space including demographic information, comorbidity, clinical procedure and laboratory tests is being analyzed. A temporal pattern mining technic called Frequent Subgraph Mining (FSM) is being used. Model for End-stage liver disease (MELD) prediction of mortality is used as a comparator. All of our models statistically significantly outperform the MELD-score model and show an average 10% improvement of the area under the curve (AUC). The FSM technic itself does not improve the model significantly, but FSM, together with a machine learning technique called an ensemble, further improves the model performance. With the abundance of data available in healthcare through electronic health records (EHR), existing predictive models can be refined to identify and treat patients at risk for higher mortality. However, due to the sparsity of the temporal information needed by FSM, the FSM model does not yield significant improvements. Our work applies modern machine learning algorithms and data analysis methods on predicting one-year mortality of cirrhotic patients and builds a model that predicts one-year mortality significantly more accurate than the MELD score. We have also tested the potential of FSM and provided a new perspective of the importance of clinical features.

Comparison of Conventional Control and Robust Control on Double-Pipe Heat Exchanger

Heat exchanger is a device used to mix liquids having different temperatures. In this case, the temperature control becomes a critical objective. This research work presents the temperature control of the double-pipe heat exchanger (multi-input multi-output (MIMO) system), which is modeled as first-order coupled hyperbolic partial differential equations (PDEs), using conventional and advanced control techniques, and develops appropriate robust control strategy to meet stability requirements and performance objectives. We designed the proportional–integral–derivative (PID) controller and H-infinity controller for a heat exchanger (HE) system. Frequency characteristics of sensitivity functions and open-loop and closed-loop time responses are simulated using MATLAB software and the stability of the system is analyzed using Kalman's test. The simulation results have demonstrated that the H-infinity controller is more efficient than PID in terms of robustness and performance.

Parameters Influencing Human-Machine Interaction in Hospitals

Handling life-critical systems complexity requires to be equipped with appropriate technology and the right human agents’ functions such as knowledge, experience, and competence in problem’s prevention and solving. Human agents are involved in the management and control of human-machine system’s performance. Documenting human agent’s situation awareness is crucial to support human-machine designers’ decision-making. Knowledge about risks, critical parameters and factors that can impact and threaten automation system’s performance should be collected using preventive and retrospective approaches. This paper aims to document operators’ situation awareness through the analysis of automated organizations’ feedback. The analysis of automated hospital pharmacies feedback helps identify and control critical parameters influencing human machine interaction in order to enhance system’s performance and security. Our human machine system evaluation approach has been deployed in Macon hospital center’s pharmacy which is equipped with automated drug dispensing systems since 2015. Automation’s specifications are related to technical aspects, human-machine interaction, and human aspects. The evaluation of drug delivery automation performance in Macon hospital center has shown that the performance of the automated activity depends on the performance of the automated solution chosen, and also on the control of systemic factors. In fact, 80.95% of automation specification related to the chosen Sinteco’s automated solution is met. The performance of the chosen automated solution is involved in 28.38% of automation specifications performance in Macon hospital center. The remaining systemic parameters involved in automation specifications performance need to be controlled. 

Hybrid Weighted Multiple Attribute Decision Making Handover Method for Heterogeneous Networks

Small cell deployment in 5G networks is a promising technology to enhance the capacity and coverage. However, unplanned deployment may cause high interference levels and high number of unnecessary handovers, which in turn result in an increase in the signalling overhead. To guarantee service continuity, minimize unnecessary handovers and reduce signalling overhead in heterogeneous networks, it is essential to properly model the handover decision problem. In this paper, we model the handover decision problem using Multiple Attribute Decision Making (MADM) method, specifically Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS), and propose a hybrid TOPSIS method to control the handover in heterogeneous network. The proposed method adopts a hybrid weighting policy, which is a combination of entropy and standard deviation. A hybrid weighting control parameter is introduced to balance the impact of the standard deviation and entropy weighting on the network selection process and the overall performance. Our proposed method show better performance, in terms of the number of frequent handovers and the mean user throughput, compared to the existing methods.

The Art of Leadership: Skills to Inspire the Team to Overcome Project Challenges and Achieve Their Goals

This paper highlights skills that a leader needs to acquire to lead a team successfully. With an appropriate vision and strategy, a team can be inspired, influenced and easily led. The importance of setting codes of conduct and establishing mutual agreements between the team members can help in minimizing issues and improving overall productivity. Leadership skills include the power of questioning (PoQ), effective communication, identification of team member responsibilities, and assessment of self and the team. This paper will highlight the impact of good leadership on work progress and overall team performance. The paper explains how leaders make correct decisions by avoiding hasty actions that could generate new errors, mistakes, and issues. The importance of positive expectations for the team is addressed in this paper that could result in efficient control of the work with better outcomes.

Study of the Thermal Performance of Bio-Sourced Materials Used as Thermal Insulation in Buildings under Humid Tropical Climate

In the fight against climate change, the energy consuming building sector must also be taken into account to solve this problem. In this case thermal insulation of buildings using bio-based materials is an interesting solution. Therefore, the thermal performance of some materials of this type has been studied. The advantages of these natural materials of plant origin are multiple, biodegradable, low economic cost, renewable and readily available. The use of biobased materials is widespread in the building sector in order to replace conventional insulation materials with natural materials. Vegetable fibers are very important because they have good thermal behaviour and good insulating properties. The aim of using bio-sourced materials is in line with the logic of energy control and environmental protection, the approach is to make the inhabitants of the houses comfortable and reduce their energy consumption (energy efficiency). In this research we will present the results of studies carried out on the thermal conductivity of banana leaves, latan leaves, vetivers fibers, palm kernel fibers, sargassum, coconut leaves, sawdust and bulk sugarcane leaves. The study on thermal conductivity was carried out in two ways, on the one hand using the flash method, and on the other hand a so-called hot box experiment was carried out. We will discuss and highlight a number of influential factors such as moisture and air pockets present in the samples on the thermophysical properties of these materials, in particular thermal conductivity. Finally, the result of a thermal performance test of banana leaves on a roof in Haiti will also be presented in this work.

Speedup Breadth-First Search by Graph Ordering

Breadth-First Search (BFS) is a core graph algorithm that is widely used for graph analysis. As it is frequently used in many graph applications, improving the BFS performance is essential. In this paper, we present a graph ordering method that could reorder the graph nodes to achieve better data locality, thus, improving the BFS performance. Our method is based on an observation that the sibling relationships will dominate the cache access pattern during the BFS traversal. Therefore, we propose a frequency-based model to construct the graph order. First, we optimize the graph order according to the nodes’ visit frequency. Nodes with high visit frequency will be processed in priority. Second, we try to maximize the child nodes’ overlap layer by layer. As it is proved to be NP-hard, we propose a heuristic method that could greatly reduce the preprocessing overheads.We conduct extensive experiments on 16 real-world datasets. The result shows that our method could achieve comparable performance with the state-of-the-art methods while the graph ordering overheads are only about 1/15.

Adaptive Few-Shot Deep Metric Learning

Currently the most prevalent deep learning methods require a large amount of data for training, whereas few-shot learning tries to learn a model from limited data without extensive retraining. In this paper, we present a loss function based on triplet loss for solving few-shot problem using metric based learning. Instead of setting the margin distance in triplet loss as a constant number empirically, we propose an adaptive margin distance strategy to obtain the appropriate margin distance automatically. We implement the strategy in the deep siamese network for deep metric embedding, by utilizing an optimization approach by penalizing the worst case and rewarding the best. Our experiments on image recognition and co-segmentation model demonstrate that using our proposed triplet loss with adaptive margin distance can significantly improve the performance.

Effective Leadership in the Engineering, Technology, and Construction Industry

This paper explores what effective leadership is being employed in the engineering, technology, and construction (ETC) industry. Organizations need to understand what character traits are being used and what leadership styles work to promote sustainability and improve the triple bottom line. This paper looks at multiple publications on leadership and character traits effective for managers and leaders in the ETC industry. The ETC industry is a trillion-dollar industry, and understanding ways to improve leadership is vital for organizations' successful outcomes. With improvements to the managerial and leadership, there could be ways for organizations to profit more and cut down on cost costs. Finding ways to improve motivation can help organizations improve safety, improve culture, and increase employee motivation. From the research, this paper has found that situational leadership, transformational, and transactional are the most effective leadership styles that individuals can use in the ETC industry for leadership. Character traits that are the most effective have been identified in this research paper. This research has contributed to the ways individuals who start in the engineering and technology industry can improve upon their leadership skills as they are promoted into managerial and leadership roles. The need for managerial positions in the ETC industry, such as project and construction managers, to improve is vital for successful outcomes and creating a high-level performance. The study helps provide a gap in the limited research available to improve ETC leadership for all organizations' present and future.