Mathematical Model of Depletion of Forestry Resource: Effect of Synthetic Based Industries

A mathematical model is proposed considering the forest biomass density B(t), density of wood based industries W(t) and density of synthetic industries S(t). It is assumed that the forest biomass grows logistically in the absence of wood based industries, but depletion of forestry biomass is due to presence of wood based industries. The growth of wood based industries depends on B(t), while S(t) grows at a constant rate, independent of B(t). Further there is a competition between W(t) and S(t) according to market demand. The proposed model has four ecologically feasible steady states, namely, E1: forest biomass free and wood industries free equilibrium; E2: wood industries free equilibrium and two coexisting equilibria E∗1 , E∗2 . Behavior of the system near all feasible equilibria is analyzed using the stability theory of differential equations. In the proposed model, the natural depletion rate h1 is a crucial parameter and system exhibits Hopf-bifurcation about the non-trivial equilibrium with respect to h1. The analytical results are verified using numerical simulation.

Simulation of Reactive Distillation: Comparison of Equilibrium and Nonequilibrium Stage Models

In the present study, two distinctly different approaches are followed for modeling of reactive distillation column, the equilibrium stage model and the nonequilibrium stage model. These models are simulated with a computer code developed in the present study using MATLAB programming. In the equilibrium stage models, the vapor and liquid phases are assumed to be in equilibrium and allowance is made for finite reaction rates, where as in the nonequilibrium stage models simultaneous mass transfer and reaction rates are considered. These simulated model results are validated from the experimental data reported in the literature. The simulated results of equilibrium and nonequilibrium models are compared for concentration, temperature and reaction rate profiles in a reactive distillation column for Methyl Tert Butyle Ether (MTBE) production. Both the models show similar trend for the concentration, temperature and reaction rate profiles but the nonequilibrium model predictions are higher and closer to the experimental values reported in the literature.

A Robust Deterministic Energy Smart-Grid Decisional Algorithm for Agent-Based Management

This paper is concerning the application of a deterministic decisional pattern to a multi-agent system which would provide intelligence to a distributed energy smart grid at local consumer level. Development of multi-agent application involves agent specifications, analysis, design and realization. It can be implemented by following several decisional patterns. The purpose of present article is to suggest a new approach to control the smart grid system in a decentralized competitive approach. The proposed algorithmic solution results from a deterministic dichotomous approach based on environment observation. It uses an iterative process to solve automatic learning problems. Through memory of collected past tries, the algorithm monotonically converges to very steep system operation point in attraction basin resulting from weak system nonlinearity. In this sense, system is given by (local) constitutive elementary rules the intelligence of its global existence so that it can self-organize toward optimal operating sequence.

Effects of Ice and Seawater Storing Conditions on the Sensory, Chemical and Microbiological Quality of the Mediterranean Hake (Merluccius merluccius) During Post-Catch Handling and Distribution

Changes in the sensory, chemical and microbiological quality of the Mediterranean hake during post-catch handling and distribution were investigated. 115 fish samples were seasonally received during three stages of the transfer route from the sea to the consumer and two storage methods were recorded, seawater and ice storage. Microbiological evaluation revealed higher status for the ice stored samples regarding heterotrophic bacteria (2.68 log cfu/g and 1.92 log cfu/g at 22oC and 37°C respectively) and psychrotrophic counts (3.20 log cfu/g), with statistically significant differences among storage methods. Sensory evaluation also revealed higher status for the ice stored samples with a mean quality index of 0.17 and a spoilage time estimated at 30 hours, in contrast to seawater storage, which varied from 0.28 to 0.3, and a 14-hour estimated spoilage. Detected pathogens were identified mainly in the seawater stored samples, posing questions on the quality of the product reaching the seafood markets.

Gene Network Analysis of PPAR-γ: A Bioinformatics Approach Using STRING

Gene networks present a graphical view at the level of gene activities and genetic functions and help us to understand complex interactions in a meaningful manner. In the present study, we have analyzed the gene interaction of PPAR-γ (peroxisome proliferator-activated receptor gamma) by search tool for retrieval of interacting genes. We find PPAR-γ is highly networked by genetic interactions with 10 genes: RXRA (retinoid X receptor, alpha), PPARGC1A (peroxisome proliferator-activated receptor gamma, coactivator 1 alpha), NCOA1 (nuclear receptor coactivator 1), NR0B2 (nuclear receptor subfamily 0, group B, member 2), HDAC3 (histone deacetylase 3), MED1 (mediator complex subunit 1), INS (insulin), NCOR2 (nuclear receptor co-repressor 2), PAX8 (paired box 8), ADIPOQ (adiponectin) and it augurs well for the fact that obesity and several other metabolic disorders are inter related.

Roles of Early Warning in Sea and Coast Guard Activity in Indonesia: Bakorkamla Integrated Information System

This paper will define the system that minimize the risk of the ship accidents because of high or dangerous waves namely early warning system. Since Indonesia is located in a strategic position, many internasional vessels pass by the Indonesian Sea Lanes. Therefore many issues often occur in Indonesian waters, one of the issues is the shipwreck because of dangerous waves. In order to do the preventive action for the vessels that indicated exposed the dangerous waves, Indonesian Maritime Security Coordinating Board or Bakorkamla, has built up and implemented an early warning system through integrated system, called Bakorkamla Integrated Information System (BIIS). By implementing BIIS means that Bakorkamla has already done one of the Five Principles of Sea and Coast Guard Agency, which is safety and security, and Bakorkamla also has already saved the lives of many people on the ship that will have an accident due to high waves. 

Tool Wear of (Ti,W,Si)N-Coated WC-Ni-Based Cemented Carbide in Cutting Hardened Steel

In this study, WC-Ni-based cemented carbides having different nickel contents were used as the substrate for cutting tool materials. Hardened steel was turned by a (Ti,W,Si)N-coated WC-Ni-based cemented carbide tool, and the tool wear was experimentally investigated. The following results were obtained: (1) In the (Ti,W,Si)N-coated WC-Ni-based cemented carbide, the hardness of the coating film was not much different from the content of the binding material, Ni, and the adhesion strength increased with a decrease in Ni content. (2) There is little difference between the wear progress of the (Ti,W,Si)N-coated WC-7%Ni-based cemented carbide tool and that of the (Ti,W,Si)N-coated WC-6%Co-based cemented carbide tool. (3) The wear progress of the (Ti,W,Si)N-coated WC-Ni-based cemented carbide became slower with a decrease in Ni content. From the above, it is has become clear that WC-Ni-based cemented carbide can be used as a substrate for cutting tool materials.

Investigation in Physically-Chemical Parameters of in Latvia Harvested Conventional and Organic Triticale Grains

Triticale is a manmade hybrid of wheat and rye that carries the A and B genome of durum wheat and the R genome of rye. In the scientific literature information about in Latvia harvested organic and conventional triticale grain physically-chemical composition was not found in general. Therefore, the main purpose of the current research was to investigate physically-chemical parameters of in Latvia harvested organic and convectional triticale grains. The research was accomplished on in Year 2012 from State Priekuli Plant Breeding Institute (Latvia) harvested organic and conventional triticale grains: “Dinaro”, “9403-97”, “9405-23” and “9402-3”. In the present research significant differences in chemical composition between organic and conventional triticale grains harvested in Latvia was found. It is necessary to mention that higher 1000 grain weight, bulk density and gluten index was obtained for conventional and organic triticale grain variety “9403-97”. However higher falling number, gluten and protein content was obtained for triticale grain variety “9405-23”.

Absorbed Dose Measurement in Gonads Menduring Abdominal and Pelvicradiotherapy

Two different testicular tissues have to be distinguished in regard to radiation damage: first the seminiferous tubules, corresponding to the sites of spermatogenesis, which are extremely radiosensitive. Second the testosterone secreting Leydig cells, which are considered to be less radiosensitive. This study aims to estimate testicular dose and the associated risks for infertility and hereditary effects from Abdominal and pelvic irradiation. Radiotherapy was simulated on a humanoid phantom using a 15 MV photon beam. Testicular dose was measured for various field sizes and tissue thicknesses along beam axis using an ionization chamber and TLD. For transmission Factor Also common method of measuring the absorbed dose distribution and electron contamination in the build-up region of high-energy beams for radiation therapy is by means of parallel-plate Ionisation chambers. Gonadal dose was reduced by placing lead cups around the testes supplemented by a field edge block. For a tumor dose of 100 cGy, testicular dose was 2.96-8.12 cGy depending upon the field size and the distance from the inferior field edge. The treatment at parameters, the presence of gonad shield and the somatometric characteristics determine whether testicular dose can exceed 1 Gy which allows a complete recovery of spermatogenesis.

Generalized Maximum Entropy Method for Cosmic Source Localization

The Maximum entropy principle in spectral analysis was used as an estimator of Direction of Arrival (DoA) of electromagnetic or acoustic sources impinging on an array of sensors, indeed the maximum entropy operator is very efficient when the signals of the radiating sources are ergodic and complex zero mean random processes which is the case for cosmic sources. In this paper, we present basic review of the maximum entropy method (MEM) which consists of rank one operator but not a projector, and we elaborate a new operator which is full rank and sum of all possible projectors. Two dimensional Simulation results based on Monte Carlo trials prove the resolution power of the new operator where the MEM presents some erroneous fluctuations.

Intelligent Control of Robotized Workcell by Augmented Reality Application

The computer aided for design, analysis, control, visualization and simulation of robotized workcells is very interesting in this time. Computer Aided Robot Control (CARC) is a subsystem of the system CIM including the computer aided systems of all activities connected with visualization and working of robotized workcells. There are three basic ideas: current CAD/CAM/CAE systems for design and 3D visualization, special PC based control and simulation systems and Augmented Reality Aided Manufacturing (ARAM) systems. This paper describes example of Open Source software application that can to be utilized at planning of the robotized workcells, visualization and off-line programming the automated processes realized by authors.

Combined Hydrothermal Synthesis of Zinc and Magnesium Borates at 100oC Using ZnO, MgO and H3BO3

Magnesium borate(MB) istechnical ceramic for high heat-resisting, corrosion-resisting, super mechanical strength, superinsulation, light weight, high strength, and high coefficient of elasticity. Zinc borate (ZB) can be used as multi-functional synergistic additives with flame retardant additives in polymers. The most important properties are low solubility in water and high dehydration temperature. ZB dehydrates above 290°C and anhydrous ZB has thermal resistance about 400°C. In this study, the raw materials of ZnO, MgO and H3BO3 were used with mole ratio of 1:1:9. With the starting materials hydrothermal method was applied at a temperature of 100oC. The reaction time was determined as 30, 60, 90 and 120 minutes after some preliminary experiments. After the synthesis, the crystal structure and the morphology of the products were examined by X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR). As a result, the forms of Zinc Oxide Borate Hydrate [Zn3B6O12.3.5H2O], Admontite [MgO(B2O3)3.7(H2O)] and Mcallisterite [Mg2(B6O7(OH)6)2.9(H2O)] were synthesized.

Quality Changes of Venison Marinated in Red Wine Marinade during Storage

The objective of the present study was to determine quality parameters changes of red wine marinade marinated venison during storage. Beef as a control was analysed. Protein, fat, moisture and pH content dynamics as well microbiological quality was analyzed. The meat pieces were marinated in red wine marinade at 4±2ºC temperature for 48±1h. Marinated meat was placed in polypropylene trays, hermetically sealed with high barrier polymer film Multibarrier 60 under modified atmosphere (CO2 40%+N2 60%) without and with oxygen absorber sachets, as a control packaging in air ambiance packed marinated venison and beef was used. Meat samples were analyzed after 0, 4, 7, 11 and 14 days of storage. During the storage of meat, protein and moisture content significantly (p

A Real Time Set Up for Retrieval of Emotional States from Human Neural Responses

Real time non-invasive Brain Computer Interfaces have a significant progressive role in restoring or maintaining a quality life for medically challenged people. This manuscript provides a comprehensive review of emerging research in the field of cognitive/affective computing in context of human neural responses. The perspectives of different emotion assessment modalities like face expressions, speech, text, gestures, and human physiological responses have also been discussed. Focus has been paid to explore the ability of EEG (Electroencephalogram) signals to portray thoughts, feelings, and unspoken words. An automated workflow-based protocol to design an EEG-based real time Brain Computer Interface system for analysis and classification of human emotions elicited by external audio/visual stimuli has been proposed. The front end hardware includes a cost effective and portable Emotiv EEG Neuroheadset unit, a personal computer and a set of external stimulators. Primary signal analysis and processing of real time acquired EEG shall be performed using MATLAB based advanced brain mapping toolbox EEGLab/BCILab. This shall be followed by the development of MATLAB based self-defined algorithm to capture and characterize temporal and spectral variations in EEG under emotional stimulations. The extracted hybrid feature set shall be used to classify emotional states using artificial intelligence tools like Artificial Neural Network. The final system would result in an inexpensive, portable and more intuitive Brain Computer Interface in real time scenario to control prosthetic devices by translating different brain states into operative control signals.

Efficacy of Biosimilar Pegylated Interferon Alpha 40 KD (Peg INF) in Chronic Hepatitis C Infection

Introduction: Pegylated Interferon and Ribavirin combination is standard of care in the management of chronic HCV infected patients. Efficacy of the therapy is judged by the ability to achieve biochemical and virological response as judged by RVR, EVR, ETR and SVR.Objective: To evaluate the efficacy of newly marketed biosimilar Pegylated Interferon Alpha 40KD (Peg INF) in chronic HCV patients. Materials and methods: This was observational, prospective multicentre study to evaluate the ability of biosimilar pegylated interferon alfa 2a (40KD) along with Ribavirin (weight based) to achieve SVR. The enrolled patients were separated into Naïve (A), Relapsers (B) and Non Responders(C) based on the previous history of interferon exposure and its response. The RGT was followed on ALT and RVR, EVR, ETR and SVR.Results:As per protocol analysis estimated SVR for three groups is 86.6% for naïve, 89.4% for relapsers and 52.4% for non-responders to standard interferon. Conclusion: It is concluded that Bio-similar pegylated interferon alfa-2a (40kD) along with Ribavirin has good anti-viral efficacy in Naïve, Relapsers and Non-responders to standard IFN of chronic HCV infected patients requiring treatment.

Structural Safety Evaluation of Zip-Line Due to Dynamic Impact Load

In recent year, with recent increase of interest towards leisure sports, increased number of Zip-Line or Zip-Wire facilities has built. Many researches have been actively conducted on the emphasis of the cable and the wire at the bridge. However, very limited researches have been conducted on the safety of the Zip-Line structure. In fact, fall accidents from Zip-Line have been reported frequently. Therefore, in this study, the structural safety of Zip-Line under dynamic impact loading condition were evaluated on the previously installed steel cable for leisure (Zip-Line), using 3-dimensional nonlinear Finite Element (FE) model. The result from current study would assist assurance of systematic stability of Zip-Line.

Phase Transition Characteristics of Flame-Synthesized Gamma-Al2O3 Nanoparticles with Heat Treatment

In this study, the phase transition characteristics of flame-synthesized γ-Al2O3 nanoparticles to α-Al2O3 have been investigated. The nanoparticles were synthesized by using a coflow hydrogen diffusion flame. The phase transition and particle characteristics of the Al2O3 nanoparticles were determined by examining the crystalline structure and the shape of the collected nanoparticles before and after the heat treatment. The morphology and crystal structure of the Al2O3 nanoparticles were determined from SEM images and XRD analyses, respectively. The measured specific surface area and averaged particle size were 63.44m2/g and 23.94nm, respectively. Based on the scanning electron microscope images and x-ray diffraction patterns, it is believed that the onset temperature of the phase transition to α-Al2O3 was existed near 1200oC. The averaged diameters of the sintered particles heat treated at 1,260oC were approximately 80nm.

Modeling Moisture and Density Behaviors of Wood in Biomass Torrefaction Environments

Worldwide interests for the renewable energy are increasing due to environmental and climate changes from traditional petroleum related energy sources. To account for these social needs, ligneous biomass energy is considered as one of the environmentally friend energy solutions. The wood torrefaction process is a feasible method to improve the properties of the biomass fuel and makes the wood have low moisture, lower smoke emission and increased heating value. In this work, therefore, the moisture evaporation model which largely affects energy efficiency of ligneous biomass through moisture contents and heating value relative to its weight is studied with numerical modeling approach by analyzing the effects of torrefaction furnace temperature. The results show that the temperature and moisture fraction of wood decrease by increasing the furnace temperature. When the torrefaction temperature is lower than 423K, there were little changes of the moisture fraction in the wood. Also, it can be found that charcoal is produced more slowly when the torrefaction temperature is lower than 573K.

EnArgus: A Knowledge-Based Search Application for Energy Research Projects

Often the users of a semantic search application are facing the problem that they do not find appropriate terms for their search. This holds especially if the data to be searched is from a technical field in which the user does not have expertise. In order to support the user finding the results he seeks, we developed a domain-specific ontology and implemented it into a search application. The ontology serves as a knowledge base, suggesting technical terms to the user which he can add to his query. In this paper, we present the search application and the underlying ontology as well as the project EnArgus in which the application was developed.

Hydrogen and Biofuel Production from 2-Propanol Over Ru/Al2O3 Catalyst in Supercritical Water

Hydrogen is an important chemical in many industries and it is expected to become one of the major fuels for energy generation in the future. Unfortunately, hydrogen does not exist in its elemental form in nature and therefore has to be produced from hydrocarbons, hydrogen-containing compounds or water. Above its critical point (374.8oC and 22.1MPa), water has lower density and viscosity, and a higher heat capacity than those of ambient water. Mass transfer in supercritical water (SCW) is enhanced due to its increased diffusivity and transport ability. The reduced dielectric constant makes supercritical water a better solvent for organic compounds and gases. Hence, due to the aforementioned desirable properties, there is a growing interest toward studies regarding the gasification of organic matter containing biomass or model biomass solutions in supercritical water. In this study, hydrogen and biofuel production by the catalytic gasification of 2-Propanol in supercritical conditions of water was investigated. Ru/Al2O3 was the catalyst used in the gasification reactions. All of the experiments were performed under a constant pressure of 25 MPa. The effects of five reaction temperatures (400, 450, 500, 550 and 600oC) and five reaction times (10, 15, 20, 25 and 30 s) on the gasification yield and flammable component content were investigated.