Noise Analysis of Single-Ended Input Differential Amplifier using Stochastic Differential Equation

In this paper, we analyze the effect of noise in a single- ended input differential amplifier working at high frequencies. Both extrinsic and intrinsic noise are analyzed using time domain method employing techniques from stochastic calculus. Stochastic differential equations are used to obtain autocorrelation functions of the output noise voltage and other solution statistics like mean and variance. The analysis leads to important design implications and suggests changes in the device parameters for improved noise characteristics of the differential amplifier.

The Effect of Cooperation Teaching Method on Learning of Students in Primary Schools

The effect of teaching method on learning assistance Dunn Review .The study, to compare the effects of collaboration on teaching mathematics learning courses, including writing, science, experimental girl students by other methods of teaching basic first paid and the amount of learning students methods have been trained to cooperate with other students with other traditional methods have been trained to compare. The survey on 100 students in Tehran that using random sampling ¬ cluster of girl students between the first primary selections was performed. Considering the topic of semi-experimental research methods used to practice the necessary information by questionnaire, examination questions by the researcher, in collaboration with teachers and view authority in this field and related courses that teach these must have been collected. Research samples to test and control groups were divided. Experimental group and control group collaboration using traditional methods of mathematics courses, including writing and experimental sciences were trained. Research results using statistical methods T is obtained in two independent groups show that, through training assistance will lead to positive results and student learning in comparison with traditional methods, will increase also led to collaboration methods increase skills to solve math lesson practice, better understanding and increased skill level of students in practical lessons such as science and has been writing.

Efficient Large Numbers Karatsuba-Ofman Multiplier Designs for Embedded Systems

Long number multiplications (n ≥ 128-bit) are a primitive in most cryptosystems. They can be performed better by using Karatsuba-Ofman technique. This algorithm is easy to parallelize on workstation network and on distributed memory, and it-s known as the practical method of choice. Multiplying long numbers using Karatsuba-Ofman algorithm is fast but is highly recursive. In this paper, we propose different designs of implementing Karatsuba-Ofman multiplier. A mixture of sequential and combinational system design techniques involving pipelining is applied to our proposed designs. Multiplying large numbers can be adapted flexibly to time, area and power criteria. Computationally and occupation constrained in embedded systems such as: smart cards, mobile phones..., multiplication of finite field elements can be achieved more efficiently. The proposed designs are compared to other existing techniques. Mathematical models (Area (n), Delay (n)) of our proposed designs are also elaborated and evaluated on different FPGAs devices.

Lightning Protection Systems Design for Substations by Using Masts and Matlab

The economical criterion is accounted as the objective function to develop a computer program for designing lightning protection systems for substations by using masts and Matlab in this work. Masts are needed to be placed at desired locations; the program will then show mast heights whose sum is the smallest, i.e. satisfies the economical criterion. The program is helpful for engineers to quickly design a lightning protection system for a substation. To realize this work, methodology and limited conditions of the program, as well as an example of the program result, were described in this paper.

Reliable Capacitated Facility Location Problem Considering Maximal Covering

This paper provides a framework in order to incorporate reliability issue as a sign of disruption in distribution systems and partial covering theory as a response to limitation in coverage radios and economical preferences, simultaneously into the traditional literatures of capacitated facility location problems. As a result we develop a bi-objective model based on the discrete scenarios for expected cost minimization and demands coverage maximization through a three echelon supply chain network by facilitating multi-capacity levels for provider side layers and imposing gradual coverage function for distribution centers (DCs). Additionally, in spite of objectives aggregation for solving the model through LINGO software, a branch of LP-Metric method called Min- Max approach is proposed and different aspects of corresponds model will be explored.

Bode Stability Analysis for Single Wall Carbon Nanotube Interconnects Used in 3D-VLSI Circuits

Bode stability analysis based on transmission line modeling (TLM) for single wall carbon nanotube (SWCNT) interconnects used in 3D-VLSI circuits is investigated for the first time. In this analysis, the dependence of the degree of relative stability for SWCNT interconnects on the geometry of each tube has been acquired. It is shown that, increasing the length and diameter of each tube, SWCNT interconnects become more stable.

Biofungicide Trichodex WP

Grey mold on grape is caused by the fungus Botrytis cinerea Pers. Trichodex WP, a new biofungicide, that contains fungal spores of Trichoderma harzianum Rifai, was used for biological control of Grey mold on grape. The efficacy of Trichodex WP has been reported from many experiments. Experiments were carried out in the locality – Banatski Karlovac, on grapevine species – talijanski rizling. The trials were set according to instructions of methods PP1/152(2) and PP1/17(3) , according to a fully randomized block design. Phytotoxicity was estimated by PP methods 1/135(2), the intensity of infection according to Towsend Heuberger , the efficiency by Abbott, the analysis of variance with Duncan test and PP/181(2). Application of Trichodex WP is limited to the first two treatments. Other treatments are performed with the fungicides based on a.i. procymidone, vinclozoline and iprodione.

University Ranking Systems – From League Table to Homogeneous Groups of Universities

The paper contains a review of the literature in terms of the critical analysis of methodologies of university ranking systems. Furthermore, the initiatives supported by the European Commission (U-Map, U-Multirank) and CHE Ranking are described. Special attention is paid to the tendencies in the development of ranking systems. According to the author, the ranking organizations should abandon the classic form of ranking, namely a hierarchical ordering of universities from “the best" to “the worse". In the empirical part of this paper, using one of the method of cluster analysis called k-means clustering, the author presents university classifications of the top universities from the Shanghai Jiao Tong University-s (SJTU) Academic Ranking of World Universities (ARWU).

The Differential Transform Method for Advection-Diffusion Problems

In this paper a class of numerical methods to solve linear and nonlinear PDEs and also systems of PDEs is developed. The Differential Transform method associated with the Method of Lines (MoL) is used. The theory for linear problems is extended to the nonlinear case, and a recurrence relation is established. This method can achieve an arbitrary high-order accuracy in time. A variable stepsize algorithm and some numerical results are also presented.

Discovery of Time Series Event Patterns based on Time Constraints from Textual Data

This paper proposes a method that discovers time series event patterns from textual data with time information. The patterns are composed of sequences of events and each event is extracted from the textual data, where an event is characteristic content included in the textual data such as a company name, an action, and an impression of a customer. The method introduces 7 types of time constraints based on the analysis of the textual data. The method also evaluates these constraints when the frequency of a time series event pattern is calculated. We can flexibly define the time constraints for interesting combinations of events and can discover valid time series event patterns which satisfy these conditions. The paper applies the method to daily business reports collected by a sales force automation system and verifies its effectiveness through numerical experiments.

Intra Prediction using Weighted Average of Pixel Values According to Prediction Direction

In this paper, we proposed a method to reduce quantization error. In order to reduce quantization error, low pass filtering is applied on neighboring samples of current block in H.264/AVC. However, it has a weak point that low pass filtering is performed regardless of prediction direction. Since it doesn-t consider prediction direction, it may not reduce quantization error effectively. Proposed method considers prediction direction for low pass filtering and uses a threshold condition for reducing flag bit. We compare our experimental result with conventional method in H.264/AVC and we can achieve the average bit-rate reduction of 1.534% by applying the proposed method. Bit-rate reduction between 0.580% and 3.567% are shown for experimental results.

Research on Maintenance Design Method based Virtual Maintenance

The essentiality of maintenance assessment and maintenance optimization in design stage is analyzed, and the existent problems of conventional maintenance design method are illuminated. MDMVM (Maintenance Design Method based Virtual Maintenance) is illuminated, and the process of MDMVM established, and the MDMVM architecture is given out. The key techniques of MDMVM are analyzed, and include maintenance design based KBE (Knowledge Based Engineering) and virtual maintenance based physically attribute. According to physical property, physically based modeling, visual object movement control, the simulation of operation force and maintenance sequence planning method are emphatically illuminated. Maintenance design system based virtual maintenance is established in foundation of maintenance design method.

Shannon-Weaver Biodiversity of Neutrophils in Fractal Networks of Immunofluorescence for Medical Diagnostics

We develop new nonlinear methods of immunofluorescence analysis for a sensitive technology of respiratory burst reaction of DNA fluorescence due to oxidative activity in the peripheral blood neutrophils. Histograms in flow cytometry experiments represent a fluorescence flashes frequency as functions of fluorescence intensity. We used the Shannon-Weaver index for definition of neutrophils- biodiversity and Hurst index for definition of fractal-s correlations in immunofluorescence for different donors, as the basic quantitative criteria for medical diagnostics of health status. We analyze frequencies of flashes, information, Shannon entropies and their fractals in immunofluorescence networks due to reduction of histogram range. We found the number of simplest universal correlations for biodiversity, information and Hurst index in diagnostics and classification of pathologies for wide spectra of diseases. In addition is determined the clear criterion of a common immunity and human health status in a form of yes/no answers type. These answers based on peculiarities of information in immunofluorescence networks and biodiversity of neutrophils. Experimental data analysis has shown the existence of homeostasis for information entropy in oxidative activity of DNA in neutrophil nuclei for all donors.

Exploring Inter-Relationships between Events to Identify Strategic Technological Competencies: A Combined Approach

The inherent complexity in nowadays- business environments is forcing organizations to be attentive to the dynamics in several fronts. Therefore, the management of technological innovation is continually faced with uncertainty about the future. These issues lead to a need for a systemic perspective, able to analyze the consequences of interactions between different factors. The field of technology foresight has proposed methods and tools to deal with this broader perspective. In an attempt to provide a method to analyze the complex interactions between events in several areas, departing from the identification of the most strategic competencies, this paper presents a methodology based on the Delphi method and Quality Function Deployment. This methodology is applied in a sheet metal processing equipment manufacturer, as a case study.

Assessing Land Cover Change Trajectories in Olomouc, Czech Republic

Olomouc is a unique and complex landmark with widespread forestation and land use. This research work was conducted to assess important and complex land use change trajectories in Olomouc region. Multi-temporal satellite data from 1991, 2001 and 2013 were used to extract land use/cover types by object oriented classification method. To achieve the objectives, three different aspects were used: (1) Calculate the quantity of each transition; (2) Allocate location based landscape pattern (3) Compare land use/cover evaluation procedure. Land cover change trajectories shows that 16.69% agriculture, 54.33% forest and 21.98% other areas (settlement, pasture and water-body) were stable in all three decade. Approximately 30% of the study area maintained as a same land cove type from 1991 to 2013. Here broad scale of political and socioeconomic factors was also affect the rate and direction of landscape changes. Distance from the settlements was the most important predictor of land cover change trajectories. This showed that most of landscape trajectories were caused by socio-economic activities and mainly led to virtuous change on the ecological environment.

High Accuracy Eigensolutions in Elasticity for Boundary Integral Equations by Nyström Method

Elastic boundary eigensolution problems are converted into boundary integral equations by potential theory. The kernels of the boundary integral equations have both the logarithmic and Hilbert singularity simultaneously. We present the mechanical quadrature methods for solving eigensolutions of the boundary integral equations by dealing with two kinds of singularities at the same time. The methods possess high accuracy O(h3) and low computing complexity. The convergence and stability are proved based on Anselone-s collective compact theory. Bases on the asymptotic error expansion with odd powers, we can greatly improve the accuracy of the approximation, and also derive a posteriori error estimate which can be used for constructing self-adaptive algorithms. The efficiency of the algorithms are illustrated by numerical examples.

The Application of Non-quantitative Modelling in the Analysis of a Network Warfare Environment

Network warfare is an emerging concept that focuses on the network and computer based forms through which information is attacked and defended. Various computer and network security concepts thus play a role in network warfare. Due the intricacy of the various interacting components, a model to better understand the complexity in a network warfare environment would be beneficial. Non-quantitative modeling is a useful method to better characterize the field due to the rich ideas that can be generated based on the use of secular associations, chronological origins, linked concepts, categorizations and context specifications. This paper proposes the use of non-quantitative methods through a morphological analysis to better explore and define the influential conditions in a network warfare environment.

Local Error Control in the RK5GL3 Method

The RK5GL3 method is a numerical method for solving initial value problems in ordinary differential equations, and is based on a combination of a fifth-order Runge-Kutta method and 3-point Gauss-Legendre quadrature. In this paper we describe an effective local error control algorithm for RK5GL3, which uses local extrapolation with an eighth-order Runge-Kutta method in tandem with RK5GL3, and a Hermite interpolating polynomial for solution estimation at the Gauss-Legendre quadrature nodes.

A Novel Method for the Characterization of Synchronization and Coupling in Multichannel EEG and ECoG

In this paper we introduce a novel method for the characterization of synchronziation and coupling effects in multivariate time series that can be used for the analysis of EEG or ECoG signals recorded during epileptic seizures. The method allows to visualize the spatio-temporal evolution of synchronization and coupling effects that are characteristic for epileptic seizures. Similar to other methods proposed for this purpose our method is based on a regression analysis. However, a more general definition of the regression together with an effective channel selection procedure allows to use the method even for time series that are highly correlated, which is commonly the case in EEG/ECoG recordings with large numbers of electrodes. The method was experimentally tested on ECoG recordings of epileptic seizures from patients with temporal lobe epilepsies. A comparision with the results from a independent visual inspection by clinical experts showed an excellent agreement with the patterns obtained with the proposed method.

Lagrangian Method for Solving Unsteady Gas Equation

In this paper we propose, a Lagrangian method to solve unsteady gas equation which is a nonlinear ordinary differential equation on semi-infnite interval. This approach is based on Modified generalized Laguerre functions. This method reduces the solution of this problem to the solution of a system of algebraic equations. We also compare this work with some other numerical results. The findings show that the present solution is highly accurate.