Prioritizing the Most Important Information from Contractors’ BIM Handover for Firefighters’ Responsibilities

Fire service is responsible for protecting life, assets, and natural resources from fire and other hazardous incidents. Search and rescue in unfamiliar buildings is a vital part of firefighters’ responsibilities. Providing firefighters with precise building information in an easy-to-understand format is a potential solution for mitigating the negative consequences of fire hazards. The negative effect of insufficient knowledge about a building’s indoor environment impedes firefighters’ capabilities and leads to lost property. A data rich building information modeling (BIM) is a potentially useful source in three-dimensional (3D) visualization and data/information storage for fire emergency response. Therefore, this research’s purpose is prioritizing the required information for firefighters from the most important information to the least important. A survey was carried out with firefighters working in the Norman Fire Department to obtain the importance of each building information item. The results show that “the location of exit doors, windows, corridors, elevators, and stairs”, “material of building elements”, and “building data” are the three most important information specified by firefighters. The results also implied that the 2D model of architectural, structural and way finding is more understandable in comparison with the 3D model, while the 3D model of MEP system could convey more information than the 2D model. Furthermore, color in visualization can help firefighters to understand the building information easier and quicker. Sufficient internal consistency of all responses was proven through developing the Pearson Correlation Matrix and obtaining Cronbach’s alpha of 0.916. Therefore, the results of this study are reliable and could be applied to the population.

The Significance of Cultural Risks for Western Consultants Executing Gulf Cooperation Council Megaprojects

Differences in commercial, professional and personal cultural traditions between western consultants and project sponsors in the Gulf Cooperation Council (GCC) region are potentially significant in the workplace, and this can impact on project outcomes. These cultural differences can, for example, result in conflict amongst senior managers, which can negatively impact the megaproject. New entrants to the GCC often experience ‘culture shock’ as they attempt to integrate into their unfamiliar environments. Megaprojects are unique ventures with individual project characteristics, which need to be considered when managing their associated risks. Megaproject research to date has mostly ignored the significance of the absence of cultural congruence in the GCC, which is surprising considering that there are large volumes of megaprojects in various stages of construction in the GCC. An initial step to dealing with cultural issues is to acknowledge culture as a significant risk factor (SRF). This paper seeks to understand the criticality for western consultants to address these risks. It considers the cultural barriers that exist between GCC sponsors and western consultants and examines the cultural distance between the key actors. Initial findings suggest the presence to a certain extent of ethnocentricity. Other cultural clashes arise out of a lack of appreciation of the customs, practices and traditions of ‘the Other’, such as the need for avoiding public humiliation and the hierarchal significance rankings. The concept and significance of cultural shock as part of the integration process for new arrivals are considered. Culture shock describes the state of anxiety and frustration resulting from the immersion in a culture distinctly different from one's own. There are potentially substantial project risks associated with underestimating the process of cultural integration. This paper examines two distinct but intertwined issues: the societal and professional culture differences associated with expatriate assignments. A case study examines the cultural congruences between GCC sponsors and American, British and German consultants, over a ten-year cycle. This provides indicators as to which nationalities encountered the most profound cultural issues and the nature of these. GCC megaprojects are typically intensive fast track demanding ventures, where consultant turnover is high. The study finds that building trust-filled relationships is key to successful project team integration and therefore, to successful megaproject execution. Findings indicate that both professional and social inclusion processes have steep learning curves. Traditional risk management practice is to approach any uncertainty in a structured way to mitigate the potential impact on project outcomes. This research highlights cultural risk as a significant factor in the management of GCC megaprojects. These risks arising from high staff turnover typically include loss of project knowledge, delays to the project, cost and disruption in replacing staff. This paper calls for cultural risk to be recognised as an SRF, as the first step to developing risk management strategies, and to reduce staff turnover for western consultants in GCC megaprojects.

Ordinal Regression with Fenton-Wilkinson Order Statistics: A Case Study of an Orienteering Race

In sports, individuals and teams are typically interested in final rankings. Final results, such as times or distances, dictate these rankings, also known as places. Places can be further associated with ordered random variables, commonly referred to as order statistics. In this work, we introduce a simple, yet accurate order statistical ordinal regression function that predicts relay race places with changeover-times. We call this function the Fenton-Wilkinson Order Statistics model. This model is built on the following educated assumption: individual leg-times follow log-normal distributions. Moreover, our key idea is to utilize Fenton-Wilkinson approximations of changeover-times alongside an estimator for the total number of teams as in the notorious German tank problem. This original place regression function is sigmoidal and thus correctly predicts the existence of a small number of elite teams that significantly outperform the rest of the teams. Our model also describes how place increases linearly with changeover-time at the inflection point of the log-normal distribution function. With real-world data from Jukola 2019, a massive orienteering relay race, the model is shown to be highly accurate even when the size of the training set is only 5% of the whole data set. Numerical results also show that our model exhibits smaller place prediction root-mean-square-errors than linear regression, mord regression and Gaussian process regression.

Extended Intuitionistic Fuzzy VIKOR Method in Group Decision Making: The Case of Vendor Selection Decision

Vendor (supplier) selection is a group decision-making (GDM) process, in which, based on some predetermined criteria, the experts’ preferences are provided in order to rank and choose the most desirable suppliers. In the real business environment, our attitudes or our choices would be made in an uncertain and indecisive situation could not be expressed in a crisp framework. Intuitionistic fuzzy sets (IFSs) could handle such situations in the best way. VIKOR method was developed to solve multi-criteria decision-making (MCDM) problems. This method, which is used to determine the compromised feasible solution with respect to the conflicting criteria, introduces a multi-criteria ranking index based on the particular measure of 'closeness' to the 'ideal solution'. Until now, there has been a little investigation of VIKOR with IFS, therefore we extended the intuitionistic fuzzy (IF) VIKOR to solve vendor selection problem under IF GDM environment. The present study intends to develop an IF VIKOR method in a GDM situation. Therefore, a model is presented to calculate the criterion weights based on entropy measure. Then, the interval-valued intuitionistic fuzzy weighted geometric (IFWG) operator utilized to obtain the total decision matrix. In the next stage, an approach based on the positive idle intuitionistic fuzzy number (PIIFN) and negative idle intuitionistic fuzzy number (NIIFN) was developed. Finally, the application of the proposed method to solve a vendor selection problem illustrated.

Evaluation of the Execution Effect of the Minimum Grain Purchase Price in Rural Areas

This paper uses the analytic hierarchy process to study the execution effect of the minimum purchase price of grain in different regions and various grain crops. Firstly, for different regions, five indicators including grain yield, grain sown area, gross agricultural production, grain consumption price index, and disposable income of rural residents were selected to construct an evaluation index system. We collect data of six provinces including Hebei Province, Heilongjiang Province and Shandong Province from 2006 to 2017. Then, the judgment matrix is constructed, and the hierarchical single ordering and consistency test are carried out to determine the scoring standard for the minimum purchase price of grain. The ranking of the execution effect from high to low is: Heilongjiang Province, Shandong Province, Hebei Province, Guizhou Province, Shaanxi Province, and Guangdong Province. Secondly, taking Shandong Province as an example, we collect the relevant data of sown area and yield of cereals, beans, potatoes and other crops from 2006 to 2017. The weight of area and yield index is determined by expert scoring method. And the average sown area and yield of cereals, beans and potatoes in 2006-2017 were calculated, respectively. On this basis, according to the sum of products of weights and mean values, the execution effects of different grain crops are determined. It turns out that among the cereals, the minimum purchase price had the best execution effect on paddy, followed by wheat and finally maize. Moreover, among major categories of crops, cereals perform best, followed by beans and finally potatoes. Lastly, countermeasures are proposed for different regions, various categories of crops, and different crops of the same category.

Review of the Road Crash Data Availability in Iraq

Iraq is a middle income country where the road safety issue is considered one of the leading causes of deaths. To control the road risk issue, the Iraqi Ministry of Planning, General Statistical Organization started to organise a collection system of traffic accidents data with details related to their causes and severity. These data are published as an annual report. In this paper, a review of the available crash data in Iraq will be presented. The available data represent the rate of accidents in aggregated level and classified according to their types, road users’ details, and crash severity, type of vehicles, causes and number of causalities. The review is according to the types of models used in road safety studies and research, and according to the required road safety data in the road constructions tasks. The available data are also compared with the road safety dataset published in the United Kingdom as an example of developed country. It is concluded that the data in Iraq are suitable for descriptive and exploratory models, aggregated level comparison analysis, and evaluation and monitoring the progress of the overall traffic safety performance. However, important traffic safety studies require disaggregated level of data and details related to the factors of the likelihood of traffic crashes. Some studies require spatial geographic details such as the location of the accidents which is essential in ranking the roads according to their level of safety, and name the most dangerous roads in Iraq which requires tactic plan to control this issue. Global Road safety agencies interested in solve this problem in low and middle-income countries have designed road safety assessment methodologies which are basing on the road attributes data only. Therefore, in this research it is recommended to use one of these methodologies.

Bug Localization on Single-Line Bugs of Apache Commons Math Library

Software bug localization is one of the most costly tasks in program repair technique. Therefore, there is a high claim for automated bug localization techniques that can monitor programmers to the locations of bugs, with slight human arbitration. Spectrum-based bug localization aims to help software developers to discover bugs rapidly by investigating abstractions of the program traces to make a ranking list of most possible buggy modules. Using the Apache Commons Math library project, we study the diagnostic accuracy using our spectrum-based bug localization metric. Our outcomes show that the greater performance of a specific similarity coefficient, used to inspect the program spectra, is mostly effective on localizing of single line bugs.

Taguchi Robust Design for Optimal Setting of Process Wastes Parameters in an Automotive Parts Manufacturing Company

As a technique that reduces variation in a product by lessening the sensitivity of the design to sources of variation, rather than by controlling their sources, Taguchi Robust Design entails the designing of ideal goods, by developing a product that has minimal variance in its characteristics and also meets the desired exact performance. This paper examined the concept of the manufacturing approach and its application to brake pad product of an automotive parts manufacturing company. Although the firm claimed that only defects, excess inventory, and over-production were the few wastes that grossly affect their productivity and profitability, a careful study and analysis of their manufacturing processes with the application of Single Minute Exchange of Dies (SMED) tool showed that the waste of waiting is the fourth waste that bedevils the firm. The selection of the Taguchi L9 orthogonal array which is based on the four parameters and the three levels of variation for each parameter revealed that with a range of 2.17, that waiting is the major waste that the company must reduce in order to continue to be viable. Also, to enhance the company’s throughput and profitability, the wastes of over-production, excess inventory, and defects with ranges of 2.01, 1.46, and 0.82, ranking second, third, and fourth respectively must also be reduced to the barest minimum. After proposing -33.84 as the highest optimum Signal-to-Noise ratio to be maintained for the waste of waiting, the paper advocated for the adoption of all the tools and techniques of Lean Production System (LPS), and Continuous Improvement (CI), and concluded by recommending SMED in order to drastically reduce set up time which leads to unnecessary waiting.

Uncertainty Analysis of ROSA/LSTF Test on Pressurized Water Reactor Cold Leg Small-Break Loss-of-Coolant Accident without Scram

The author conducted post-test analysis with the RELAP5/MOD3.3 code for an experiment using the ROSA/LSTF (rig of safety assessment/large-scale test facility) that simulated a 1% cold leg small-break loss-of-coolant accident under the failure of scram in a pressurized water reactor. The LSTF test assumed total failure of high-pressure injection system of emergency core cooling system. In the LSTF test, natural circulation contributed to maintain core cooling effect for a relatively long time until core uncovery occurred. The post-test analysis result confirmed inadequate prediction of the primary coolant distribution. The author created the phenomena identification and ranking table (PIRT) for each component. The author investigated the influences of uncertain parameters determined by the PIRT on the cladding surface temperature at a certain time during core uncovery within the defined uncertain ranges.

Multicriteria Decision Analysis for Development Ranking of Balkan Countries

In this research, the Balkan peninsula countries' developmental integration into European Union represents the strategic economic development objectives of the countries in the region. In order to objectively analyze the level of economic development competition of Balkan Peninsula countries, the mathematical compromise programming technique of multicriteria evaluation is used in this ranking problem. The primary aim of this research is to explain the role and significance of the multicriteria method evaluation using a real example of compromise solutions. Using the mathematical compromise programming technique, twelve countries of the Balkan Peninsula are economically evaluated and mutually compared. The economic development evaluation of the countries is performed according to five evaluation criteria forming the basis for economic development evaluation. The multiattribute model is solved using the mathematical compromise programming technique for producing different Pareto solutions. The results obtained by the multicriteria evaluation gives the possibility of identification and evaluation of the most eminent economic development indicators for each country separately. Finally, in this way, the proposed method has proved to be a successful model for the evaluation of the Balkan peninsula countries' economic development competition.

Multivariate Assessment of Mathematics Test Scores of Students in Qatar

Data on various aspects of education are collected at the institutional and government level regularly. In Australia, for example, students at various levels of schooling undertake examinations in numeracy and literacy as part of NAPLAN testing, enabling longitudinal assessment of such data as well as comparisons between schools and states within Australia. Another source of educational data collected internationally is via the PISA study which collects data from several countries when students are approximately 15 years of age and enables comparisons in the performance of science, mathematics and English between countries as well as ranking of countries based on performance in these standardised tests. As well as student and school outcomes based on the tests taken as part of the PISA study, there is a wealth of other data collected in the study including parental demographics data and data related to teaching strategies used by educators. Overall, an abundance of educational data is available which has the potential to be used to help improve educational attainment and teaching of content in order to improve learning outcomes. A multivariate assessment of such data enables multiple variables to be considered simultaneously and will be used in the present study to help develop profiles of students based on performance in mathematics using data obtained from the PISA study.

A Context-Sensitive Algorithm for Media Similarity Search

This paper presents a context-sensitive media similarity search algorithm. One of the central problems regarding media search is the semantic gap between the low-level features computed automatically from media data and the human interpretation of them. This is because the notion of similarity is usually based on high-level abstraction but the low-level features do not sometimes reflect the human perception. Many media search algorithms have used the Minkowski metric to measure similarity between image pairs. However those functions cannot adequately capture the aspects of the characteristics of the human visual system as well as the nonlinear relationships in contextual information given by images in a collection. Our search algorithm tackles this problem by employing a similarity measure and a ranking strategy that reflect the nonlinearity of human perception and contextual information in a dataset. Similarity search in an image database based on this contextual information shows encouraging experimental results.

Hybrid Methods for Optimisation of Weights in Spatial Multi-Criteria Evaluation Decision for Fire Risk and Hazard

The challenge for everyone involved in preserving the ecosystem is to find creative ways to protect and restore the remaining ecosystems while accommodating and enhancing the country social and economic well-being. Frequent fires of anthropogenic origin have been affecting the ecosystems in many countries adversely. Hence adopting ways of decision making such as Multicriteria Decision Making (MCDM) is appropriate since it will enhance the evaluation and analysis of fire risk and hazard of the ecosystem. In this paper, fire risk and hazard data from the West Gonja area of Ghana were used in some of the methods (Analytical Hierarchy Process, Compromise Programming, and Grey Relational Analysis (GRA) for MCDM evaluation and analysis to determine the optimal weight method for fire risk and hazard. Ranking of the land cover types was carried out using; Fire Hazard, Fire Fighting Capacity and Response Risk Criteria. Pairwise comparison under Analytic Hierarchy Process (AHP) was used to determine the weight of the various criteria. Weights for sub-criteria were also obtained by the pairwise comparison method. The results were optimised using GRA and Compromise Programming (CP). The results from each method, hybrid GRA and CP, were compared and it was established that all methods were satisfactory in terms of optimisation of weight. The most optimal method for spatial multicriteria evaluation was the hybrid GRA method. Thus, a hybrid AHP and GRA method is more effective method for ranking alternatives in MCDM than the hybrid AHP and CP method.

Ontology-Based Systemizing of the Science Information Devoted to Waste Utilizing by Methanogenesis

Over the past decades, amount of scientific information has been growing exponentially. It became more complicated to process and systemize this amount of data. The approach to systematization of scientific information on the production of biogas based on the ontological IT platform “T.O.D.O.S.” has been developed. It has been proposed to select semantic characteristics of each work for their further introduction into the IT platform “T.O.D.O.S.”. An ontological graph with a ranking function for previous scientific research and for a system of selection of microorganisms has been worked out. These systems provide high performance of information management of scientific information.

A Comparative Analysis Approach Based on Fuzzy AHP, TOPSIS and PROMETHEE for the Selection Problem of GSCM Solutions

Sustainable economic growth is nowadays driving firms to extend toward the adoption of many green supply chain management (GSCM) solutions. However, the evaluation and selection of these solutions is a matter of concern that needs very serious decisions, involving complexity owing to the presence of various associated factors. To resolve this problem, a comparative analysis approach based on multi-criteria decision-making methods is proposed for adequate evaluation of sustainable supply chain management solutions. In the present paper, we propose an integrated decision-making model based on FAHP (Fuzzy Analytic Hierarchy Process), TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) and PROMETHEE (Preference Ranking Organisation METHod for Enrichment Evaluations) to contribute to a better understanding and development of new sustainable strategies for industrial organizations. Due to the varied importance of the selected criteria, FAHP is used to identify the evaluation criteria and assign the importance weights for each criterion, while TOPSIS and PROMETHEE methods employ these weighted criteria as inputs to evaluate and rank the alternatives. The main objective is to provide a comparative analysis based on TOPSIS and PROMETHEE processes to help make sound and reasoned decisions related to the selection problem of GSCM solution.

A Design for Customer Preferences Model by Cluster Analysis of Geometric Features and Customer Preferences

In the design cycle, a main design task is to determine the external shape of the product. The external shape of a product is one of the key factors that can affect the customers’ preferences linking to the motivation to buy the product, especially in the case of a consumer electronic product such as a mobile phone. The relationship between the external shape and the customer preferences needs to be studied to enhance the customer’s purchase desire and action. In this research, a design for customer preferences model is developed for investigating the relationships between the external shape and the customer preferences of a product. In the first stage, the names of the geometric features are collected and evaluated from the data of the specified internet web pages using the developed text miner. The key geometric features can be determined if the number of occurrence on the web pages is relatively high. For each key geometric feature, the numerical values are explored using the text miner to collect the internet data from the web pages. In the second stage, a cluster analysis model is developed to evaluate the numerical values of the key geometric features to divide the external shapes into several groups. Several design suggestion cases can be proposed, for example, large model, mid-size model, and mini model, for designing a mobile phone. A customer preference index is developed by evaluating the numerical data of each of the key geometric features of the design suggestion cases. The design suggestion case with the top ranking of the customer preference index can be selected as the final design of the product. In this paper, an example product of a notebook computer is illustrated. It shows that the external shape of a product can be used to drive customer preferences. The presented design for customer preferences model is useful for determining a suitable external shape of the product to increase customer preferences.

Multidimensional Compromise Programming Evaluation of Digital Commerce Websites

Multidimensional compromise programming evaluation of digital commerce websites is essential not only to have recommendations for improvement, but also to make comparisons with global business competitors. This research provides a multidimensional decision making model that prioritizes the objective criteria weights of various commerce websites using multidimensional compromise solution. Evaluation of digital commerce website quality can be considered as a complex information system structure including qualitative and quantitative factors for a multicriteria decision making problem. The proposed multicriteria decision making approach mainly consists of three sequential steps for the selection problem. In the first step, three major different evaluation criteria are characterized for website ranking problem. In the second step, identified critical criteria are weighted using the standard deviation procedure. In the third step, the multidimensional compromise programming is applied to rank the digital commerce websites.

Multidimensional Compromise Optimization for Development Ranking of the Gulf Cooperation Council Countries and Turkey

In this research, a multidimensional  compromise optimization method is proposed for multidimensional decision making analysis in the development ranking of the Gulf Cooperation Council Countries and Turkey. The proposed approach presents ranking solutions resulting from different multicriteria decision analyses, which yield different ranking orders for the same ranking problem, consisting of a set of alternatives in terms of numerous competing criteria when they are applied with the same numerical data. The multiobjective optimization decision making problem is considered in three sequential steps. In the first step, five different criteria related to the development ranking are gathered from the research field. In the second step, identified evaluation criteria are, objectively, weighted using standard deviation procedure. In the third step, a country selection problem is illustrated with a numerical example as an application of the proposed multidimensional  compromise optimization model. Finally, multidimensional  compromise optimization approach is applied to rank the Gulf Cooperation Council Countries and Turkey. 

Multidimensional Performance Tracking

In this study, a model, together with a software tool that implements it, has been developed to determine the performance ratings of employees in an organization operating in the information technology sector using the indicators obtained from employees' online study data. Weighted Sum (WS) Method and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method based on multidimensional decision making approach were used in the study. WS and TOPSIS methods provide multidimensional decision making (MDDM) methods that allow all dimensions to be evaluated together considering specific weights, allowing employees to objectively evaluate the problem of online performance tracking. The application of WS and TOPSIS mathematical methods, which can combine alternatives with a large number of dimensions and reach simultaneous solution, has been implemented through an online performance tracking software. In the application of WS and TOPSIS methods, objective dimension weights were calculated by using entropy information (EI) and standard deviation (SD) methods from the data obtained by employees' online performance tracking method, decision matrix was formed by using performance scores for each employee, and a single performance score was calculated for each employee. Based on the calculated performance score, employees were given a performance evaluation decision. The results of Pareto set evidence and comparative mathematical analysis validate that employees' performance preference rankings in WS and TOPSIS methods are closely related. This suggests the compatibility, applicability, and validity of the proposed method to the MDDM problems in which a large number of alternative and dimension types are taken into account. With this study, an objective, realistic, feasible and understandable mathematical method, together with a software tool that implements it has been demonstrated. This is considered to be preferable because of the subjectivity, limitations and high cost of the methods traditionally used in the measurement and performance appraisal in the information technology sector.

Rating the Importance of Customer Requirements for Green Product Using Analytic Hierarchy Process Methodology

Identification of customer requirements and their preferences are the starting points in the process of product design. Most of design methodologies focus on traditional requirements. But in the previous decade, the green products and the environment requirements have increasingly attracted the attention with the constant increase in the level of consumer awareness towards environmental problems (such as green-house effect, global warming, pollution and energy crisis, and waste management). Determining the importance weights for the customer requirements is an essential and crucial process. This paper used the analytic hierarchy process (AHP) approach to evaluate and rate the customer requirements for green products. With respect to the ultimate goal of customer satisfaction, surveys are conducted using a five-point scale analysis. With the help of this scale, one can derive the weight vectors. This approach can improve the imprecise ranking of customer requirements inherited from studies based on the conventional AHP. Furthermore, the AHP with extent analysis is simple and easy to implement to prioritize customer requirements. The research is based on collected data through a questionnaire survey conducted over a sample of 160 people belonging to different age, marital status, education and income groups in order to identify the customer preferences for green product requirements.