Organizational Dimensions as Determinant Factors of KM Approaches in SMEs

In the current economy of increasing global competition, many organizations are attempting to use knowledge as one of the means to gain sustainable competitive advantage. Besides large organizations, the success of SMEs can be linked to how well they manage their knowledge. Despite the profusion of research about knowledge management within large organizations, fewer studies tried to analyze KM in SMEs. This research proposes a new framework showing the determinant role of organizational dimensions onto KM approaches. The paper and its propositions are based on a literature review and analysis. In this research, personalization versus codification, individualization versus institutionalization and IT-based versus non IT-based are highlighted as three distinct dimensions of knowledge management approaches. The study contributes to research by providing a more nuanced classification of KM approaches and provides guidance to managers about the types of KM approaches that should be adopted based on the size, geographical dispersion and task nature of SMEs. To the author-s knowledge, the paper is the first of its kind to examine if there are suitable configurations of KM approaches for SMEs with different dimensions. It gives valuable information, which hopefully will help SME sector to accomplish KM.

A Methodology for Quality Problems Diagnosis in SMEs

This article proposes a new methodology to be used by SMEs (Small and Medium enterprises) to characterize their performance in quality, highlighting weaknesses and area for improvement. The methodology aims to identify the principal causes of quality problems and help to prioritize improvement initiatives. This is a self-assessment methodology that intends to be easy to implement by companies with low maturity level in quality. The methodology is organized in six different steps which includes gathering information about predetermined processes and subprocesses of quality management, defined based on the well-known Juran-s trilogy for quality management (Quality planning, quality control and quality improvement) and, predetermined results categories, defined based on quality concept. A set of tools for data collecting and analysis, such as interviews, flowcharts, process analysis diagrams and Failure Mode and effects Analysis (FMEA) are used. The article also presents the conclusions obtained in the application of the methodology in two cases studies.

Credit Risk Management and Analysis in an Iranian Bank

While financial institutions have faced difficulties over the years for a multitude of reasons, the major cause of serious banking problems continues to be directly related to lax credit standards for borrowers and counterparties, poor portfolio risk management, or a lack of attention to changes in economic or other circumstances that can lead to a deterioration in the credit standing of a bank's counterparties. Credit risk is most simply defined as the potential that a bank borrower or counterparty will fail to meet its obligations in accordance with agreed terms. The goal of credit risk management is to maximize a bank's risk-adjusted rate of return by maintaining credit risk exposure within acceptable parameters. Banks need to manage the credit risk inherent in the entire portfolio as well as the risk in individual credits or transactions. Banks should also consider the relationships between credit risk and other risks. The effective management of credit risk is a critical component of a comprehensive approach to risk management and essential to the long-term success of any banking organization. In this research we also study the relationship between credit risk indices and borrower-s timely payback in Karafarin bank.

Predicting the Impact of the Defect on the Overall Environment in Function Based Systems

There is lot of work done in prediction of the fault proneness of the software systems. But, it is the severity of the faults that is more important than number of faults existing in the developed system as the major faults matters most for a developer and those major faults needs immediate attention. In this paper, we tried to predict the level of impact of the existing faults in software systems. Neuro-Fuzzy based predictor models is applied NASA-s public domain defect dataset coded in C programming language. As Correlation-based Feature Selection (CFS) evaluates the worth of a subset of attributes by considering the individual predictive ability of each feature along with the degree of redundancy between them. So, CFS is used for the selecting the best metrics that have highly correlated with level of severity of faults. The results are compared with the prediction results of Logistic Models (LMT) that was earlier quoted as the best technique in [17]. The results are recorded in terms of Accuracy, Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE). The results show that Neuro-fuzzy based model provide a relatively better prediction accuracy as compared to other models and hence, can be used for the modeling of the level of impact of faults in function based systems.

Multiclass Support Vector Machines for Environmental Sounds Classification Using log-Gabor Filters

In this paper we propose a robust environmental sound classification approach, based on spectrograms features driven from log-Gabor filters. This approach includes two methods. In the first methods, the spectrograms are passed through an appropriate log-Gabor filter banks and the outputs are averaged and underwent an optimal feature selection procedure based on a mutual information criteria. The second method uses the same steps but applied only to three patches extracted from each spectrogram. To investigate the accuracy of the proposed methods, we conduct experiments using a large database containing 10 environmental sound classes. The classification results based on Multiclass Support Vector Machines show that the second method is the most efficient with an average classification accuracy of 89.62 %.

Identifying Corruption in Legislation using Risk Analysis Methods

The objective of this article is to discuss the potential of economic analysis as a tool for identification and evaluation of corruption in legislative acts. We propose that corruption be perceived as a risk variable within the legislative process. Therefore we find it appropriate to employ risk analysis methods, used in various fields of economics, for the evaluation of corruption in legislation. Furthermore we propose the incorporation of these methods into the so called corruption impact assessment (CIA), the general framework for detection of corruption in legislative acts. The applications of the risk analysis methods are demonstrated on examples of implementation of proposed CIA in the Czech Republic.

Microwave Imaging by Application of Information Theory Criteria in MUSIC Algorithm

The performance of time-reversal MUSIC algorithm will be dramatically degrades in presence of strong noise and multiple scattering (i.e. when scatterers are close to each other). This is due to error in determining the number of scatterers. The present paper provides a new approach to alleviate such a problem using an information theoretic criterion referred as minimum description length (MDL). The merits of the novel approach are confirmed by the numerical examples. The results indicate the time-reversal MUSIC yields accurate estimate of the target locations with considerable noise and multiple scattering in the received signals.

An Optimal Load Shedding Approach for Distribution Networks with DGs considering Capacity Deficiency Modelling of Bulked Power Supply

This paper discusses a genetic algorithm (GA) based optimal load shedding that can apply for electrical distribution networks with and without dispersed generators (DG). Also, the proposed method has the ability for considering constant and variable capacity deficiency caused by unscheduled outages in the bulked generation and transmission system of bulked power supply. The genetic algorithm (GA) is employed to search for the optimal load shedding strategy in distribution networks considering DGs in two cases of constant and variable modelling of bulked power supply of distribution networks. Electrical power distribution systems have a radial network and unidirectional power flows. With the advent of dispersed generations, the electrical distribution system has a locally looped network and bidirectional power flows. Therefore, installed DG in the electrical distribution systems can cause operational problems and impact on existing operational schemes. Introduction of DGs in electrical distribution systems has introduced many new issues in operational and planning level. Load shedding as one of operational issue has no exempt. The objective is to minimize the sum of curtailed load and also system losses within the frame-work of system operational and security constraints. The proposed method is tested on a radial distribution system with 33 load points for more practical applications.

Breakdown of LDPE Film under Heavy Water Absorption

The breakdown strength characteristic of Low Density Polyethylene films (LDPE) under DC voltage application and the effect of water absorption have been studied. Mainly, our experiment was investigated under two conditions; dry and heavy water absorption. Under DC ramp voltage, the result found that the breakdown strength under heavy water absorption has a lower value than dry condition. In order to clarify the effect, the temperature rise of film was observed using non contact thermograph until the occurrence of the electrical breakdown and the conduction current of the sample was also measured in correlation with the thermograph measurement. From the observations, it was shown that under the heavy water absorption, the hot spot in the samples appeared at lower voltage. At the same voltage the temperature of the hot spot and conduction current was higher than that under the dry condition. The measurement result has a good correlation between the existence of a critical field for conduction current and thermograph observation. In case of the heavy water absorption, the occurrence of the threshold field was earlier than the dry condition as result lead to higher of conduction current and the temperature rise appears after threshold field was significantly increased in increasing of field. The higher temperature rise was caused by the higher current conduction as the result the insulation leads to breakdown to the lower field application.

e Collaborative Decisions – a DSS for Academic Environment

This paper presents an innovative approach within the area of Group Decision Support System (GDSS) by using tools based on intelligent agents. It introduces iGDSS, a software platform for decision support and collaboration and an application of this platform - eCollaborative Decisions - for academic environment, all these developed within a framework of a research project.

Fingerprint Compression Using Contourlet Transform and Multistage Vector Quantization

This paper presents a new fingerprint coding technique based on contourlet transform and multistage vector quantization. Wavelets have shown their ability in representing natural images that contain smooth areas separated with edges. However, wavelets cannot efficiently take advantage of the fact that the edges usually found in fingerprints are smooth curves. This issue is addressed by directional transforms, known as contourlets, which have the property of preserving edges. The contourlet transform is a new extension to the wavelet transform in two dimensions using nonseparable and directional filter banks. The computation and storage requirements are the major difficulty in implementing a vector quantizer. In the full-search algorithm, the computation and storage complexity is an exponential function of the number of bits used in quantizing each frame of spectral information. The storage requirement in multistage vector quantization is less when compared to full search vector quantization. The coefficients of contourlet transform are quantized by multistage vector quantization. The quantized coefficients are encoded by Huffman coding. The results obtained are tabulated and compared with the existing wavelet based ones.

Web-GIS based Outdoor Education Program for Junior High Schools

This study, focusing on the importance of encouraging outdoor activities for children, aims to propose and implement a Web-GIS based outdoor education program for junior high schools, which will then be evaluated by users. Specifically, for the purpose of improved outdoor activities in the junior high school education, the outdoor education program, with chiefly using the Web-GIS that provides a good information provision and sharing tool, is proposed and implemented before being evaluated by users. The conclusion of this study can be summarized in the following two points. (1) A five -step outdoor education program based on Web-GIS was proposed for a “second school" at junior high schools that was then implemented before being evaluated by teachers as users. (2) Based on the results of evaluation by teachers, it was clear that the general operation of Web-GIS based outdoor education program with them only is difficult due to their lack of knowledge regarding Web-GIS and that support staff who can effectively utilize Web-GIS are essential.

Robust Adaptive ELS-QR Algorithm for Linear Discrete Time Stochastic Systems Identification

This work proposes a recursive weighted ELS algorithm for system identification by applying numerically robust orthogonal Householder transformations. The properties of the proposed algorithm show it obtains acceptable results in a noisy environment: fast convergence and asymptotically unbiased estimates. Comparative analysis with others robust methods well known from literature are also presented.

Development of a 3D Mathematical Model for a Doxorubicin Controlled Release System using Pluronic Gel for Breast Cancer Treatment

Female breast cancer is the second in frequency after cervical cancer. Surgery is the most common treatment for breast cancer, followed by chemotherapy as a treatment of choice. Although effective, it causes serious side effects. Controlled-release drug delivery is an alternative method to improve the efficacy and safety of the treatment. It can release the dosage of drug between the minimum effect concentration (MEC) and minimum toxic concentration (MTC) within tumor tissue and reduce the damage of normal tissue and the side effect. Because an in vivo experiment of this system can be time-consuming and labor-intensive, a mathematical model is desired to study the effects of important parameters before the experiments are performed. Here, we describe a 3D mathematical model to predict the release of doxorubicin from pluronic gel to treat human breast cancer. This model can, ultimately, be used to effectively design the in vivo experiments.

Three-Level Converters based Generalized Unified Power Quality Conditioner

A generalized unified power quality conditioner (GUPQC) by using three single-phase three-level voltage source converters (VSCs) connected back-to-back through a common dc link is proposed in this paper as a new custom power device for a three-feeder distribution system. One of the converters is connected in shunt with one feeder for mitigation of current harmonics and reactive power compensation, while the other two VSCs are connected in series with the other two feeders to maintain the load voltage sinusoidal and at constant level. A new control scheme based on synchronous reference frame is proposed for series converters. The simulation analysis on compensation performance of GUPQC based on PSCAD/EMTDC is reported.

Hospital Based Electrocardiogram Sensor Grid

The technological concepts such as wireless hospital and portable cardiac telemetry system require the development of physiological signal acquisition devices to be easily integrated into the hospital database. In this paper we present the low cost, portable wireless ECG acquisition hardware that transmits ECG signals to a dedicated computer.The front end of the system obtains and processes incoming signals, which are then transmitted via a microcontroller and wireless Bluetooth module. A monitoring purpose Bluetooth based end user application integrated with patient database management module is developed for the computers. The system will act as a continuous event recorder, which can be used to follow up patients who have been resuscitatedfrom cardiac arrest, ventricular tachycardia but also for diagnostic purposes for patients with arrhythmia symptoms. In addition, cardiac information can be saved into the patient-s database of the hospital.

Microwave Shielding of Magnetized Hydrogen Plasma in Carbon Nanotubes

We derive simple sets of equations to describe the microwave response of a thin film of magnetized hydrogen plasma in the presence of carbon nanotubes, which were grown by ironcatalyzed high-pressure disproportionation (HiPco). By considering the interference effects due to multiple reflections between thin plasma film interfaces, we present the effects of the continuously changing external magnetic field and plasma parameters on the reflected power, absorbed power, and transmitted power in the system. The simulation results show that the interference effects play an important role in the reflectance, transmittance and absorptance of microwave radiation at the magnetized plasma slab. As a consequence, the interference effects lead to a sinusoidal variation of the reflected intensity and can greatly reduce the amount of reflection power, but the absorption power increases.

South African MNEs Entry Strategies in Africa

This is a cross-cultural study that determines South African multinational enterprises (MNEs) entry strategies as they invest in Africa. An integrated theoretical framework comprising the transaction cost theory, Uppsala model, eclectic paradigm and the distance framework was adopted. A sample of 40 South African MNEs with 415 existing FDI entries in Africa was drawn. Using an ordered logistic regression model, the impact of culture on the choice of degree of control by South African MNEs in Africa was determined. Cultural distance was one of significant factors that influenced South African MNEs- choice of degree of control. Furthermore, South African MNEs are risk averse in all countries in Africa but minimize the risks differently across sectors. Service sectors chooses to own their subsidiaries 100% and avoid dealing with the locals while manufacturing, resources and construction choose to have a local partner to share the risk.

A New Method for Contour Approximation Using Basic Ramer Idea

This paper presented two new efficient algorithms for contour approximation. The proposed algorithm is compared with Ramer (good quality), Triangle (faster) and Trapezoid (fastest) in this work; which are briefly described. Cartesian co-ordinates of an input contour are processed in such a manner that finally contours is presented by a set of selected vertices of the edge of the contour. In the paper the main idea of the analyzed procedures for contour compression is performed. For comparison, the mean square error and signal-to-noise ratio criterions are used. Computational time of analyzed methods is estimated depending on a number of numerical operations. Experimental results are obtained both in terms of image quality, compression ratios, and speed. The main advantages of the analyzed algorithm is small numbers of the arithmetic operations compared to the existing algorithms.

Comprehensive Hierarchy Evaluation of Power Quality Based on an Incentive Mechanism

In a liberalized electricity market, it is not surprising that different customers require different power quality (PQ) levels at different price. Power quality related to several power disturbances is described by many parameters, so how to define a comprehensive hierarchy evaluation system of power quality (PQCHES) has become a concerned issue. In this paper, based on four electromagnetic compatibility (EMC) levels, the numerical range of each power disturbance is divided into five grades (Grade I –Grade V), and the “barrel principle" of power quality is used for the assessment of overall PQ performance with only one grade indicator. A case study based on actual monitored data of PQ shows that the site PQ grade indicates the electromagnetic environment level and also expresses the characteristics of loads served by the site. The shortest plank principle of PQ barrel is an incentive mechanism, which can combine with the rewards/penalty mechanism (RPM) of consumed energy “on quality demand", to stimulate utilities to improve the overall PQ level and also stimulate end-user more “smart" under the infrastructure of future SmartGrid..