An Innovative Transient Free Adaptive SVC in Stepless Mode of Control

Electrical distribution systems are incurring large losses as the loads are wide spread, inadequate reactive power compensation facilities and their improper control. A comprehensive static VAR compensator consisting of capacitor bank in five binary sequential steps in conjunction with a thyristor controlled reactor of smallest step size is employed in the investigative work. The work deals with the performance evaluation through analytical studies and practical implementation on an existing system. A fast acting error adaptive controller is developed suitable both for contactor and thyristor switched capacitors. The switching operations achieved are transient free, practically no need to provide inrush current limiting reactors, TCR size minimum providing small percentages of nontriplen harmonics, facilitates stepless variation of reactive power depending on load requirement so as maintain power factor near unity always. It is elegant, closed loop microcontroller system having the features of self regulation in adaptive mode for automatic adjustment. It is successfully tested on a distribution transformer of three phase 50 Hz, Dy11, 11KV/440V, 125 KVA capacity and the functional feasibility and technical soundness are established. The controller developed is new, adaptable to both LT & HT systems and practically established to be giving reliable performance.

Arsenic Mobility from Mining Tailings of Monte San Nicolas to Presa de Mata in Guanajuato, Mexico

Mining tailings represent a generating source of rich heavy metal material with a potential danger the public health and the environment, since these metals, under certain conditions, can leach and contaminate aqueous systems that serve like supplying potable water sources. The strategy for this work is based on the observation, experimentation and the simulation that can be obtained by binding real answers of the hydrodynamic behavior of metals leached from mining tailings, and the applied mathematics that provides the logical structure to decipher the individual effects of the general physicochemical phenomenon. The case of study presented herein focuses on mining tailings deposits located in Monte San Nicolas, Guanajuato, Mexico, an abandoned mine. This was considered the contamination source that under certain physicochemical conditions can favor the metal leaching, and its transport towards aqueous systems. In addition, the cartography, meteorology, geology and the hydrodynamics and hydrological characteristics of the place, will be helpful in determining the way and the time in which these systems can interact. Preliminary results demonstrated that arsenic presents a great mobility, since this one was identified in several superficial aqueous systems of the micro watershed, as well as in sediments in concentrations that exceed the established maximum limits in the official norms. Also variations in pH and potential oxide-reduction were registered, conditions that favor the presence of different species from this element its solubility and therefore its mobility.

Prediction of Fatigue Crack Growth of Aeronautical Aluminum Alloy

In this paper fatigue crack growth behavior of aeronautical aluminum alloy 2024 T351 was studied. Effects of various loading and geometrical parameters are studied such as stress ratio, amplitude loading, etc. The fatigue crack growth with constant amplitude is studied using the AFGROW code when NASGRO model is used. The effect of the stress ratio is highlighted, where one notices a shift of the curves of crack growth. The comparative study between two orientations L-T and T-L on fatigue behavior are presented and shows the variation on the fatigue life. L-T orientation presents a good fatigue crack growth resistance. Effects of crack closure are shown in Paris domain and that no crack closure phenomenons are present at high stress intensity factor.

Adaptive Pulse Coupled Neural Network Parameters for Image Segmentation

For over a decade, the Pulse Coupled Neural Network (PCNN) based algorithms have been successfully used in image interpretation applications including image segmentation. There are several versions of the PCNN based image segmentation methods, and the segmentation accuracy of all of them is very sensitive to the values of the network parameters. Most methods treat PCNN parameters like linking coefficient and primary firing threshold as global parameters, and determine them by trial-and-error. The automatic determination of appropriate values for linking coefficient, and primary firing threshold is a challenging problem and deserves further research. This paper presents a method for obtaining global as well as local values for the linking coefficient and the primary firing threshold for neurons directly from the image statistics. Extensive simulation results show that the proposed approach achieves excellent segmentation accuracy comparable to the best accuracy obtainable by trial-and-error for a variety of images.

Verification and Validation for Java Classes using Design by Contract. The Modular External Approach

Since the conception of JML, many tools, applications and implementations have been done. In this context, the users or developers who want to use JML seem surounded by many of these tools, applications and so on. Looking for a common infrastructure and an independent language to provide a bridge between these tools and JML, we developed an approach to embedded contracts in XML for Java: XJML. This approach offer us the ability to separate preconditions, posconditions and class invariants using JML and XML, so we made a front-end which can process Runtime Assertion Checking, Extended Static Checking and Full Static Program Verification. Besides, the capabilities for this front-end can be extended and easily implemented thanks to XML. We believe that XJML is an easy way to start the building of a Graphic User Interface delivering in this way a friendly and IDE independency to developers community wich want to work with JML.

Growth Behaviors, Thermostable Direct Hemolysin Secretion and Fatty Acid Profiles of Acid-adapted and Non-adapted Vibrio parahaemolyticus

Three strains of Vibrio parahaemolyticus (690, BCRC 13023 and BCRC 13025) implicated in food poisoning outbreaks in Taiwan were subjected to acid adaptation at pH 5.5 for 90 min. The growth behaviors of acid-adapted and non-adapted V. parahaemolyticus in the media supplemented with various nitrogen and carbon sources were investigated. The effects of acid adaptation on the thermostable direct hemolysin (TDH) secretion and fatty acid profiles of V. parahaemolyticus were also examined. Results showed that acid-adapted and non-adapted V. parahaemolyticus 690, BCRC 13023 and BCRC 13025 grew similarly in TSB-3% NaCl and basal media supplemented with various carbon and nitrogen sources during incubation period. Higher TDH secretion was noted with V. parahaemolyticus 690 among the three strains. However, acid-adapted strains produced less amounts of TDH than non-adapted strains when they were grown in TSB-3% NaCl. Additionally, acid adaptation increased the ratio of SFA/USFA in cells of V. parahaemolyticus strains.

On-Line Geometrical Identification of Reconfigurable Machine Tool using Virtual Machining

One of the main research directions in CAD/CAM machining area is the reducing of machining time. The feedrate scheduling is one of the advanced techniques that allows keeping constant the uncut chip area and as sequel to keep constant the main cutting force. They are two main ways for feedrate optimization. The first consists in the cutting force monitoring, which presumes to use complex equipment for the force measurement and after this, to set the feedrate regarding the cutting force variation. The second way is to optimize the feedrate by keeping constant the material removal rate regarding the cutting conditions. In this paper there is proposed a new approach using an extended database that replaces the system model. The feedrate scheduling is determined based on the identification of the reconfigurable machine tool, and the feed value determination regarding the uncut chip section area, the contact length between tool and blank and also regarding the geometrical roughness. The first stage consists in the blank and tool monitoring for the determination of actual profiles. The next stage is the determination of programmed tool path that allows obtaining the piece target profile. The graphic representation environment models the tool and blank regions and, after this, the tool model is positioned regarding the blank model according to the programmed tool path. For each of these positions the geometrical roughness value, the uncut chip area and the contact length between tool and blank are calculated. Each of these parameters are compared with the admissible values and according to the result the feed value is established. We can consider that this approach has the following advantages: in case of complex cutting processes the prediction of cutting force is possible; there is considered the real cutting profile which has deviations from the theoretical profile; the blank-tool contact length limitation is possible; it is possible to correct the programmed tool path so that the target profile can be obtained. Applying this method, there are obtained data sets which allow the feedrate scheduling so that the uncut chip area is constant and, as a result, the cutting force is constant, which allows to use more efficiently the machine tool and to obtain the reduction of machining time.

Improving the Effectiveness of Software Testing through Test Case Reduction

This paper proposes a new technique for improving the efficiency of software testing, which is based on a conventional attempt to reduce test cases that have to be tested for any given software. The approach utilizes the advantage of Regression Testing where fewer test cases would lessen time consumption of the testing as a whole. The technique also offers a means to perform test case generation automatically. Compared to one of the techniques in the literature where the tester has no option but to perform the test case generation manually, the proposed technique provides a better option. As for the test cases reduction, the technique uses simple algebraic conditions to assign fixed values to variables (Maximum, minimum and constant variables). By doing this, the variables values would be limited within a definite range, resulting in fewer numbers of possible test cases to process. The technique can also be used in program loops and arrays.

A Mathematical Model for Predicting Isothermal Soil Moisture Profiles Using Finite Difference Method

Subgrade moisture content varies with environmental and soil conditions and has significant influence on pavement performance. Therefore, it is important to establish realistic estimates of expected subgrade moisture contents to account for the effects of this variable on predicted pavement performance during the design stage properly. The initial boundary soil suction profile for a given pavement is a critical factor in determining expected moisture variations in the subgrade for given pavement and climatic and soil conditions. Several numerical models have been developed for predicting water and solute transport in saturated and unsaturated subgrade soils. Soil hydraulic properties are required for quantitatively describing water and chemical transport processes in soils by the numerical models. The required hydraulic properties are hydraulic conductivity, water diffusivity, and specific water capacity. The objective of this paper was to determine isothermal moisture profiles in a soil fill and predict the soil moisture movement above the ground water table using a simple one-dimensional finite difference model.

Fabrication of Autonomous Wheeled Mobile Robot for Industrial Applications Using Appropriate Technology

The autonomous mobile robot was designed and implemented which was capable of navigating in the industrial environments and did a job of picking objects from variable height and delivering it to another location following a predefined trajectory. In developing country like Bangladesh industrial robotics is not very prevalent yet, due to the high installation cost. The objective of this project was to develop an autonomous mobile robot for industrial application using the available resources in the local market at lower manufacturing cost. The mechanical system of the robot was comprised of locomotion, gripping and elevation system. Grippers were designed to grip objects of a predefined shape. Cartesian elevation system was designed for vertical movement of the gripper. PIC18F452 microcontroller was the brain of the control system. The prototype autonomous robot was fabricated for relatively lower load than the industry and the performance was tested in a virtual industrial environment created within the laboratory to realize the effectiveness.

Performance Evaluation of TCP Vegas versus Different TCP Variants in Homogeneous and Heterogeneous Wired Networks

A study on the performance of TCP Vegas versus different TCP variants in homogeneous and heterogeneous wired networks are performed via simulation experiment using network simulator (ns-2). This performance evaluation prepared a comparison medium for the performance evaluation of enhanced-TCP Vegas in wired network and for wireless network. In homogeneous network, the performance of TCP Tahoe, TCP Reno, TCP NewReno, TCP Vegas and TCP SACK are analyzed. In heterogeneous network, the performances of TCP Vegas against TCP variants are analyzed. TCP Vegas outperforms other TCP variants in homogeneous wired network. However, TCP Vegas achieves unfair throughput in heterogeneous wired network.

Investigations Into the Turning Parameters Effect on the Surface Roughness of Flame Hardened Medium Carbon Steel with TiN-Al2O3-TiCN Coated Inserts based on Taguchi Techniques

The aim of this research is to evaluate surface roughness and develop a multiple regression model for surface roughness as a function of cutting parameters during the turning of flame hardened medium carbon steel with TiN-Al2O3-TiCN coated inserts. An experimental plan of work and signal-to-noise ratio (S/N) were used to relate the influence of turning parameters to the workpiece surface finish utilizing Taguchi methodology. The effects of turning parameters were studied by using the analysis of variance (ANOVA) method. Evaluated parameters were feed, cutting speed, and depth of cut. It was found that the most significant interaction among the considered turning parameters was between depth of cut and feed. The average surface roughness (Ra) resulted by TiN-Al2O3- TiCN coated inserts was about 2.44 μm and minimum value was 0.74 μm. In addition, the regression model was able to predict values for surface roughness in comparison with experimental values within reasonable limit.

Inverse Dynamic Active Ground Motion Acceleration Inputs Estimation of the Retaining Structure

The innovative fuzzy estimator is used to estimate the ground motion acceleration of the retaining structure in this study. The Kalman filter without the input term and the fuzzy weighting recursive least square estimator are two main portions of this method. The innovation vector can be produced by the Kalman filter, and be applied to the fuzzy weighting recursive least square estimator to estimate the acceleration input over time. The excellent performance of this estimator is demonstrated by comparing it with the use of difference weighting function, the distinct levels of the measurement noise covariance and the initial process noise covariance. The availability and the precision of the proposed method proposed in this study can be verified by comparing the actual value and the one obtained by numerical simulation.

Human Capacity Building in Manufacturing Sector: A Factor to Industrial Growth in Nigeria

Human ability is a major source of constraint to manufacturing industries in Nigeria. This paper therefore, discusses the importance of human influences on manufacturing and consequently to industrialization and National development. In this paper, the development of manufacturing was anchored on two main factors; Infrastructural Capacity Development (ICD) and Human Capacity Development (HCD). However, a wider view was given to the HCD and the various contemporary human capacity issues militating against manufacturing in Nigeria. It went further to discuss various ways of acquiring and upgrading workers’ skills and finally, suggestions were made on how to tackle the onerous human capacity issues in manufacturing.

Machining of FRP Composites by Abrasive Jet Machining Optimization Using Taguchi

Abrasive Jet Machining is an Unconventional machining process in which the metal is removed from brittle and hard material in the form of micro-chips. With increase in need of materials like ceramics, composites, in manufacturing of various Mechanical & Electronic components, AJM has become a useful technique for micro machining. The present study highlights the influence of different parameters like Pressure, SOD, Time, Abrasive grain size, nozzle diameter on the Metal removal of FRP (Fiber Reinforced Polymer) composite by Abrasive jet machining. The results of the Experiments conducted were analyzed and optimized with TAGUCHI method of Optimization and ANOVA for Optimal Value.

Validation of an EEG Classification Procedure Aimed at Physiological Interpretation

One approach to assess neural networks underlying the cognitive processes is to study Electroencephalography (EEG). It is relevant to detect various mental states and characterize the physiological changes that help to discriminate two situations. That is why an EEG (amplitude, synchrony) classification procedure is described, validated. The two situations are "eyes closed" and "eyes opened" in order to study the "alpha blocking response" phenomenon in the occipital area. The good classification rate between the two situations is 92.1 % (SD = 3.5%) The spatial distribution of a part of amplitude features that helps to discriminate the two situations are located in the occipital regions that permit to validate the localization method. Moreover amplitude features in frontal areas, "short distant" synchrony in frontal areas and "long distant" synchrony between frontal and occipital area also help to discriminate between the two situations. This procedure will be used for mental fatigue detection.

Kinematic Gait Analysis of Upper and Lower Limbs Joints in Hemiplegic Children

Children with hemiplgic cerebral palsy often walk with diminished reciprocal arm swing so the purpose of this study was to describe kinematic characteristics in children with hemiplegic cerebral palsy (CP) during the gait suphases, and find if there is a correlation between upper(shoulder and elbow) and lower(hip, knee, and ankle) limb joints either in involved or uninvolved.48 children with hemiplegic cerebral palsy (18boys, 30girls) with an average age of (5.1±0.87) years were selected randomly to evaluate joint angles during gait by 3D motion analysis system with 6 pro reflex cameras in a sagittal plane for both sides of the body. The results showed increased shoulder and elbow flexion, increased hip angular displacement, decreased knee and ankle arcs during gait cycle, also there is correlation between shoulder and elbow to hip, knee, and ankle joints during various subphases of gait.

Defects in Open Source Software: The Role of Online Forums

Free and open source software is gaining popularity at an unprecedented rate of growth. Organizations despite some concerns about the quality have been using them for various purposes. One of the biggest concerns about free and open source software is post release software defects and their fixing. Many believe that there is no appropriate support available to fix the bugs. On the contrary some believe that due to the active involvement of internet user in online forums, they become a major source of communicating the identification and fixing of defects in open source software. The research model of this empirical investigation establishes and studies the relationship between open source software defects and online public forums. The results of this empirical study provide evidence about the realities of software defects myths of open source software. We used a dataset consist of 616 open source software projects covering a broad range of categories to study the research model of this investigation. The results of this investigation show that online forums play a significant role identifying and fixing the defects in open source software.

Family Communication Patterns between Muslim and Santal Communities in Rural Bangladesh: A Cross-Cultural Perspective

This study compares family communication patterns in association with family socio-cultural status, especially marriage and family pattern, and couples- socio-economic status between Muslim and Santal communities in rural Bangladesh. A total of 288 couples, 145 couples from the Muslim and 143 couples from the Santal were randomly selected through cluster sampling procedure from Kalna village situated in Tanore Upazila of Rajshahi district of Bangladesh, where both the communities dwell as neighbors. In order to collect data from the selected samples, interview method with semistructural questionnaire schedule was applied. The responses given by the respondents were analyzed by Pearson-s chi-squire test and bivariate correlation techniques. The results of Pearson-s chi-squire test revealed that family communication patterns (X2= 25. 90, df= 2, p0.05) were significantly different between the Muslim and Santal communities. In addition, Spearman-s bivariate correlation coefficients suggested that among the exogenous factors, family type (rs=.135, p

Conversion in Chemical Reactors using Hollow Cylindrical Catalyst Pellet

Heterogeneous catalysis is vital for a number of chemical, refinery and pollution control processes. The use of catalyst pellets of hollow cylindrical shape provide several distinct advantages over other common shapes, and can therefore help to enhance conversion levels in reactors. A better utilization of the catalytic material is probably most notable of these features due to the absence of the pellet core, which helps to significantly lower the effect of the internal transport resistance. This is reflected in the enhancement of the effectiveness factor. For the case of the first order irreversible kinetics, a substantial increase in the effectiveness factor can be obtained by varying shape parameters. Important shape parameters of a finite hollow cylinder are the ratio of the inside to the outside radii (κ) and the height to the diameter ratio (γ). A high value of κ the generally helps to enhance the effectiveness factor. On the other hand, lower values of the effectiveness factors are obtained when the dimension of the height and the diameter are comparable. Thus, the departure of parameter γ from the unity favors higher effectiveness factor. Since a higher effectiveness factor is a measure of a greater utilization of the catalytic material, higher conversion levels can be achieved using the hollow cylindrical pellets possessing optimized shape parameters.