Design of PID Controller for Higher Order Continuous Systems using MPSO based Model Formulation Technique

This paper proposes a new algebraic scheme to design a PID controller for higher order linear time invariant continuous systems. Modified PSO (MPSO) based model order formulation techniques have applied to obtain the effective formulated second order system. A controller is tuned to meet the desired performance specification by using pole-zero cancellation method. Proposed PID controller is attached with both higher order system and formulated second order system. The closed loop response is observed for stabilization process and compared with general PSO based formulated second order system. The proposed method is illustrated through numerical example from literature.

The Effects of Asymmetric Bracing on Steel Structures under Seismic Loads

Because of architectural condition and structure application, sometimes mass source and stiffness source are not coincidence, and the structure is irregular. The structure is also might be asymmetric as an asymmetric bracing in plan which leads to unbalance distribution of stiffness or because of unbalance distribution of the mass. Both condition lead to eccentricity and torsion in the structure. The deficiency of ordinary code to evaluate the performance of steel structures against earthquake has been caused designing based on performance level or capacity spectrum be used. By using the mentioned methods it is possible to design a structure that its behavior against different earthquakes be predictive. In this article 5- story buildings with different percentage of asymmetric which is because of stiffness changes have been designed. The static and dynamic nonlinear analysis under three acceleration recording has been done. Finally performance level of the structure has been evaluated.

Curbing Cybercrime by Application of Internet Users’ Identification System (IUIS) in Nigeria

Cybercrime is now becoming a big challenge in Nigeria apart from the traditional crime. Inability to identify perpetrators is one of the reasons for the growing menace. This paper proposes a design for monitoring internet users’ activities in order to curbing cybercrime. It requires redefining the operations of Internet Service Providers (ISPs) which will now mandate users to be authenticated before accessing the internet. In implementing this work which can be adapted to a larger scale, a virtual router application is developed and configured to mimic a real router device. A sign-up portal is developed to allow users to register with the ISP. The portal asks for identification information which will include bio-data and government issued identification data like National Identity Card number, et cetera. A unique username and password are chosen by the user to enable access to the internet which will be used to reference him to an Internet Protocol Address (IP Address) of any system he uses on the internet and thereby associating him to any criminal act related to that IP address at that particular time. Questions such as “What happen when another user knows the password and uses it to commit crime?” and other pertinent issues are addressed.

Optimization of Extraction of Phenolic Compounds from Avicennia marina (Forssk.)Vierh using Response Surface Methodology

Optimization of extraction of phenolic compounds from Avicennia marina using response surface methodology was carried out during the present study. Five levels, three factors rotatable design (CCRD) was utilized to examine the optimum combination of extraction variables based on the TPC of Avicennia marina leaves. The best combination of response function was 78.41 °C, drying temperature; 26.18°C; extraction temperature and 36.53 minutes of extraction time. However, the procedure can be promptly extended to the study of several others pharmaceutical processes like purification of bioactive substances, drying of extracts and development of the pharmaceutical dosage forms for the benefit of consumers.

Behaviour of Base-Isolated Structures with High Initial Isolator Stiffness

Analytical seismic response of multi-story building supported on base isolation system is investigated under real earthquake motion. The superstructure is idealized as a shear type flexible building with lateral degree-of-freedom at each floor. The force-deformation behaviour of the isolation system is modelled by the bi-linear behaviour which can be effectively used to model all isolation systems in practice. The governing equations of motion of the isolated structural system are derived. The response of the system is obtained numerically by step-by-method under three real recorded earthquake motions and pulse motions associated in the near-fault earthquake motion. The variation of the top floor acceleration, interstory drift, base shear and bearing displacement of the isolated building is studied under different initial stiffness of the bi-linear isolation system. It was observed that the high initial stiffness of the isolation system excites higher modes in base-isolated structure and generate floor accelerations and story drift. Such behaviour of the base-isolated building especially supported on sliding type of isolation systems can be detrimental to sensitive equipment installed in the building. On the other hand, the bearing displacement and base shear found to reduce marginally with the increase of the initial stiffness of the initial stiffness of the isolation system. Further, the above behaviour of the base-isolated building was observed for different parameters of the bearing (i.e. post-yield stiffness and characteristic strength) and earthquake motions (i.e. real time history as well as pulse type motion).

Hydrogen and Diesel Combustion on a Single Cylinder Four Stroke Diesel Engine in Dual Fuel mode with Varying Injection Strategies

The present energy situation and the concerns about global warming has stimulated active research interest in non-petroleum, carbon free compounds and non-polluting fuels, particularly for transportation, power generation, and agricultural sectors. Environmental concerns and limited amount of petroleum fuels have caused interests in the development of alternative fuels for internal combustion (IC) engines. The petroleum crude reserves however, are declining and consumption of transport fuels particularly in the developing countries is increasing at high rates. Severe shortage of liquid fuels derived from petroleum may be faced in the second half of this century. Recently more and more stringent environmental regulations being enacted in the USA and Europe have led to the research and development activities on clean alternative fuels. Among the gaseous fuels hydrogen is considered to be one of the clean alternative fuel. Hydrogen is an interesting candidate for future internal combustion engine based power trains. In this experimental investigation, the performance and combustion analysis were carried out on a direct injection (DI) diesel engine using hydrogen with diesel following the TMI(Time Manifold Injection) technique at different injection timings of 10 degree,45 degree and 80 degree ATDC using an electronic control unit (ECU) and injection durations were controlled. Further, the tests have been carried out at a constant speed of 1500rpm at different load conditions and it can be observed that brake thermal efficiency increases with increase in load conditions with a maximum gain of 15% at full load conditions during all injection strategies of hydrogen. It was also observed that with the increase in hydrogen energy share BSEC started reducing and it reduced to a maximum of 9% as compared to baseline diesel at 10deg ATDC injection during maximum injection proving the exceptional combustion properties of hydrogen.

A Parallel Architecture for the Real Time Correction of Stereoscopic Images

In this paper, we will present an architecture for the implementation of a real time stereoscopic images correction's approach. This architecture is parallel and makes use of several memory blocs in which are memorized pre calculated data relating to the cameras used for the acquisition of images. The use of reduced images proves to be essential in the proposed approach; the suggested architecture must so be able to carry out the real time reduction of original images.

Stability and HOPF Bifurcation Analysis in a Stage-structured Predator-prey system with Two Time Delays

A stage-structured predator-prey system with two time delays is considered. By analyzing the corresponding characteristic equation, the local stability of a positive equilibrium is investigated and the existence of Hopf bifurcations is established. Formulae are derived to determine the direction of bifurcations and the stability of bifurcating periodic solutions by using the normal form theory and center manifold theorem. Numerical simulations are carried out to illustrate the theoretical results. Based on the global Hopf bifurcation theorem for general functional differential equations, the global existence of periodic solutions is established.

Impulse Response Shortening for Discrete Multitone Transceivers using Convex Optimization Approach

In this paper we propose a new criterion for solving the problem of channel shortening in multi-carrier systems. In a discrete multitone receiver, a time-domain equalizer (TEQ) reduces intersymbol interference (ISI) by shortening the effective duration of the channel impulse response. Minimum mean square error (MMSE) method for TEQ does not give satisfactory results. In [1] a new criterion for partially equalizing severe ISI channels to reduce the cyclic prefix overhead of the discrete multitone transceiver (DMT), assuming a fixed transmission bandwidth, is introduced. Due to specific constrained (unit morm constraint on the target impulse response (TIR)) in their method, the freedom to choose optimum vector (TIR) is reduced. Better results can be obtained by avoiding the unit norm constraint on the target impulse response (TIR). In this paper we change the cost function proposed in [1] to the cost function of determining the maximum of a determinant subject to linear matrix inequality (LMI) and quadratic constraint and solve the resulting optimization problem. Usefulness of the proposed method is shown with the help of simulations.

Catalytical Effect of Fluka 05120 on Methane Decomposition

Carboneous catalytical methane decomposition is an attractive process because it produces two valuable products: hydrogen and carbon. Furthermore, this reaction does not emit any green house or hazardous gases. In the present study, experiments were conducted in a thermo gravimetric analyzer using Fluka 05120 as carboneous catalyst to analyze its effectiveness in methane decomposition. Various temperatures and methane partial pressures were chosen and carbon mass gain was observed as a function of time. Results are presented in terms of carbon formation rate, hydrogen production and catalytical activity. It is observed that there is linearity in carbon deposition amount by time at lower reaction temperature (780 °C). On the other hand, it is observed that carbon and hydrogen formation rates are increased with increasing temperature. Finally, we observed that the carbon formation rate is highest at 950 °C within the range of temperatures studied.

Color Image Edge Detection using Pseudo-Complement and Matrix Operations

A color image edge detection algorithm is proposed in this paper using Pseudo-complement and matrix rotation operations. First, pseudo-complement method is applied on the image for each channel. Then, matrix operations are applied on the output image of the first stage. Dominant pixels are obtained by image differencing between the pseudo-complement image and the matrix operated image. Median filtering is carried out to smoothen the image thereby removing the isolated pixels. Finally, the dominant or core pixels occurring in at least two channels are selected. On plotting the selected edge pixels, the final edge map of the given color image is obtained. The algorithm is also tested in HSV and YCbCr color spaces. Experimental results on both synthetic and real world images show that the accuracy of the proposed method is comparable to other color edge detectors. All the proposed procedures can be applied to any image domain and runs in polynomial time.

A Schur Method for Solving Projected Continuous-Time Sylvester Equations

In this paper, we propose a direct method based on the real Schur factorization for solving the projected Sylvester equation with relatively small size. The algebraic formula of the solution of the projected continuous-time Sylvester equation is presented. The computational cost of the direct method is estimated. Numerical experiments show that this direct method has high accuracy.

Designing a Fuzzy Logic Controller to Enhance Directional Stability of Vehicles under Difficult Maneuvers

Vehicle which are turning or maneuvering at high speeds are susceptible to sliding and subsequently deviate from desired path. In this paper the dynamics governing the Yaw/Roll behavior of a vehicle has been simulated. Two different simulations have been used one for the real vehicle, for which a fuzzy controller is designed to increase its directional stability property. The other simulation is for a hypothetical vehicle with much higher tire cornering stiffness which is capable of developing the required lateral forces at the tire-ground patch contact to attain the desired lateral acceleration for the vehicle to follow the desired path without slippage. This simulation model is our reference model. The logic for keeping the vehicle on the desired track in the cornering or maneuvering state is to have some braking forces on the inner or outer tires based on the direction of vehicle deviation from the desired path. The inputs to our vehicle simulation model is steer angle δ and vehicle velocity V , and the outputs can be any kinematical parameters like yaw rate, yaw acceleration, side slip angle, rate of side slip angle and so on. The proposed fuzzy controller is a feed forward controller. This controller has two inputs which are steer angle δ and vehicle velocity V, and the output of the controller is the correcting moment M, which guides the vehicle back to the desired track. To develop the membership functions for the controller inputs and output and the fuzzy rules, the vehicle simulation has been run for 1000 times and the correcting moment have been determined by trial and error. Results of the vehicle simulation with fuzzy controller are very promising and show the vehicle performance is enhanced greatly over the vehicle without the controller. In fact the vehicle performance with the controller is very near the performance of the reference ideal model.

Mathematical Model of Dengue Disease with the Incubation Period of Virus

Dengue virus is transmitted from person to person through the biting of infected Aedes Aegypti mosquitoes. DEN-1, DEN-2, DEN-3 and DEN-4 are four serotypes of this virus. Infection with one of these four serotypes apparently produces permanent immunity to it, but only temporary cross immunity to the others. The length of time during incubation of dengue virus in human and mosquito are considered in this study. The dengue patients are classified into infected and infectious classes. The infectious human can transmit dengue virus to susceptible mosquitoes but infected human can not. The transmission model of this disease is formulated. The human population is divided into susceptible, infected, infectious and recovered classes. The mosquito population is separated into susceptible, infected and infectious classes. Only infectious mosquitoes can transmit dengue virus to the susceptible human. We analyze this model by using dynamical analysis method. The threshold condition is discussed to reduce the outbreak of this disease.

Controlled Synchronization of an Array of Nonlinear System with Time Delays

In this paper, we propose synchronization of an array of nonlinear systems with time delays. The array of systems is decomposed into isolated systems to establish appropriate Lyapunov¬Krasovskii functional. Using the Lyapunov-Krasovskii functional, a sufficient condition for the synchronization is derived in terms of LMIs(Linear Matrix Inequalities). Delayed feedback control gains are obtained by solving the sufficient condition. Numerical examples are given to show the validity the proposed method.

Accelerating Integer Neural Networks On Low Cost DSPs

In this paper, low end Digital Signal Processors (DSPs) are applied to accelerate integer neural networks. The use of DSPs to accelerate neural networks has been a topic of study for some time, and has demonstrated significant performance improvements. Recently, work has been done on integer only neural networks, which greatly reduces hardware requirements, and thus allows for cheaper hardware implementation. DSPs with Arithmetic Logic Units (ALUs) that support floating or fixed point arithmetic are generally more expensive than their integer only counterparts due to increased circuit complexity. However if the need for floating or fixed point math operation can be removed, then simpler, lower cost DSPs can be used. To achieve this, an integer only neural network is created in this paper, which is then accelerated by using DSP instructions to improve performance.

Artificial Neural Network based Modeling of Evaporation Losses in Reservoirs

An Artificial Neural Network based modeling technique has been used to study the influence of different combinations of meteorological parameters on evaporation from a reservoir. The data set used is taken from an earlier reported study. Several input combination were tried so as to find out the importance of different input parameters in predicting the evaporation. The prediction accuracy of Artificial Neural Network has also been compared with the accuracy of linear regression for predicting evaporation. The comparison demonstrated superior performance of Artificial Neural Network over linear regression approach. The findings of the study also revealed the requirement of all input parameters considered together, instead of individual parameters taken one at a time as reported in earlier studies, in predicting the evaporation. The highest correlation coefficient (0.960) along with lowest root mean square error (0.865) was obtained with the input combination of air temperature, wind speed, sunshine hours and mean relative humidity. A graph between the actual and predicted values of evaporation suggests that most of the values lie within a scatter of ±15% with all input parameters. The findings of this study suggest the usefulness of ANN technique in predicting the evaporation losses from reservoirs.

Controlling of Load Elevators by the Fuzzy Logic Method

In this study, a fuzzy-logic based control system was designed to ensure that time and energy is saved during the operation of load elevators which are used during the construction of tall buildings. In the control system that was devised, for the load elevators to work more efficiently, the energy interval where the motor worked was taken as the output variable whereas the amount of load and the building height were taken as input variables. The most appropriate working intervals depending on the characteristics of these variables were defined by the help of an expert. Fuzzy expert system software was formed using Delphi programming language. In this design, mamdani max-min inference mechanism was used and the centroid method was employed in the clarification procedure. In conclusion, it is observed that the system that was designed is feasible and this is supported by statistical analyses..

Effect of Rotating Electrode

A gold coated copper rotating electrode was used to eliminate surface oxidation effect. This study examined the effect of electrode rotation on the ozone generation process and showed that an ozonizer with an electrode rotating system might be a possible way to increase ozone-synthesis efficiency. Two new phenomena appeared during experiments with the rotating electrode. First was that ozone concentration increased to about two times higher than that of the case with no rotation. Second, input power and discharge area were found to increase with the rotation speed. Both ozone concentration and ozone production efficiency improved in the case of rotating electrode compared to the case with a non-rotating electrode. One possible reason for this was the increase in discharge length of micro-discharges during electrode rotation. The rotating electrode decreased onset voltage, while reactor capacitance increased with rotation. Use of a rotating-type electrode allowed earlier observation of the ozone zero phenomena compared with a non-rotating electrode because, during rotation, the entire electrode surface was functional, allowing nitrogen on the electrode surface to be evenly consumed. Nitrogen demand increased with increasing rotation s

A New Scheme for Improving the Quality of Service in Heterogeneous Wireless Network for Data Stream Sending

In this paper, we first consider the quality of service problems in heterogeneous wireless networks for sending the video data, which their problem of being real-time is pronounced. At last, we present a method for ensuring the end-to-end quality of service at application layer level for adaptable sending of the video data at heterogeneous wireless networks. To do this, mechanism in different layers has been used. We have used the stop mechanism, the adaptation mechanism and the graceful degrade at the application layer, the multi-level congestion feedback mechanism in the network layer and connection cutting off decision mechanism in the link layer. At the end, the presented method and the achieved improvement is simulated and presented in the NS-2 software.