Renovation Planning Model for a Shopping Mall

In this study, the pedestrian simulation VISWALK integration and application platform ant algorithms written program made to construct a renovation engineering schedule planning mode. The use of simulation analysis platform construction site when the user running the simulation, after calculating the user walks in the case of construction delays, the ant algorithm to find out the minimum delay time schedule plan, and add volume and unit area deactivated loss of business computing, and finally to the owners and users of two different positions cut considerations pick out the best schedule planning. To assess and validate its effectiveness, this study constructed the model imported floor of a shopping mall floor renovation engineering cases. Verify that the case can be found from the mode of the proposed project schedule planning program can effectively reduce the delay time and the user's walking mall loss of business, the impact of the operation on the renovation engineering facilities in the building to a minimum.

Video Sharing System Based on Wi-Fi Camera

This paper introduces a video sharing platform based on WiFi, which consists of camera, mobile phone and PC server. This platform can receive wireless signal from the camera and show the live video on the mobile phone captured by camera. In addition, it is able to send commands to camera and control the camera’s holder to rotate. The platform can be applied to interactive teaching and dangerous area’s monitoring and so on. Testing results show that the platform can share the live video of mobile phone. Furthermore, if the system’s PC server and the camera and many mobile phones are connected together, it can transfer photos concurrently.

Simulating Drilling Using a CAD System

Nowadays, the rapid development of CAD systems’ programming environments results in the creation of multiple downstream applications, which are developed and becoming increasingly available. CAD based manufacturing simulations is gradually following the same trend. Drilling is the most popular holemaking process used in a variety of industries. A specially built piece of software that deals with the drilling kinematics is presented. The cutting forces are calculated based on the tool geometry, the cutting conditions and the tool/work-piece materials. The results are verified by experimental work. Finally, the response surface methodology (RSM) is applied and mathematical models of the total thrust force and the thrust force developed because of the main cutting edges are proposed.

Lateral Torsional Buckling of Steel Thin-Walled Beams with Lateral Restraints

Metal thin-walled members have been widely used in building industry. Usually they are utilized as purlins, girts or ceiling beams. Due to slenderness of thin-walled cross-sections these structural members are prone to stability problems (e.g. flexural buckling, lateral torsional buckling). If buckling is not constructionally prevented their resistance is limited by buckling strength. In practice planar members of roof or wall cladding can be attached to thin-walled members. These elements reduce displacement of thin-walled members and therefore increase their buckling strength. If this effect is taken into static assessment more economical sections of thin-walled members might be utilized and certain savings of material might be achieved. This paper focuses on problem of determination of critical load of steel thin-walled beams with lateral continuous restraint which is crucial for lateral torsional buckling assessment.

Characterization Study of Aluminium 6061 Hybrid Composite

Aluminium matrix composites with alumina reinforcements give superior mechanical & physical properties. Their applications in several fields like automobile, aerospace, defense, sports, electronics, bio-medical and other industrial purposes are becoming essential for the last several decades. In the present work, fabrication of hybrid composite was done by Stir casting technique using Al 6061 as a matrix with alumina and silicon carbide (SiC) as reinforcement materials. The weight percentage of alumina is varied from 2 to 4% and the silicon carbide weight percentage is maintained constant at 2%. Hardness and wear tests are performed in the as cast and heat treated conditions. Age hardening treatment was performed on the specimen with solutionizing at 550°C, aging at two temperatures (150 and 200°C) for different time durations. Hardness distribution curves are drawn and peak hardness values are recorded. Hardness increase was very sensitive with respect to the decrease in aging temperature. There was an improvement in wear resistance of the peak aged material when aged at lower temperature. Also increase in weight percent of alumina, increases wear resistance at lower temperature but opposite behavior was seen when aged at higher temperature.

Forecast Based on an Empirical Probability Function with an Adjusted Error Using Propagation of Error

This paper addresses a cutting edge method of business demand forecasting, based on an empirical probability function when the historical behavior of the data is random. Additionally, it presents error determination based on the numerical method technique ‘propagation of errors.’ The methodology was conducted characterization and process diagnostics demand planning as part of the production management, then new ways to predict its value through techniques of probability and to calculate their mistake investigated, it was tools used numerical methods. All this based on the behavior of the data. This analysis was determined considering the specific business circumstances of a company in the sector of communications, located in the city of Bogota, Colombia. In conclusion, using this application it was possible to obtain the adequate stock of the products required by the company to provide its services, helping the company reduce its service time, increase the client satisfaction rate, reduce stock which has not been in rotation for a long time, code its inventory, and plan reorder points for the replenishment of stock.

What Factors Contributed to the Adaptation Gap during School Transition in Japan?

The present study was aimed to examine the structure of children’s adaptation during school transition and to identify a commonality and dissimilarity at the elementary and junior high school. 1,983 students in the 6th grade and 2,051 students in the 7th grade were extracted by stratified two-stage random sampling and completed the ASSESS that evaluated the school adaptation from the view point of ‘general satisfaction’, ‘teachers’ support’, ‘friends’ support’, ‘anti-bullying relationship’, ‘prosocial skills’, and ‘academic adaptation’. The 7th graders tend to be worse adaptation than the 6th graders. A structural equation modeling showed the goodness of fit for each grades. Both models were very similar but the 7th graders’ model showed a lower coefficient at the pass from ‘teachers’ support’ to ‘friends’ support’. The role of ‘teachers’ support’ was decreased to keep a good relation in junior high school. We also discussed how we provide a continuous assistance for prevention of the 7th graders’ gap.

Classification of Construction Projects

In order to address construction project requirements and specifications, scholars and practitioners need to establish taxonomy according to a scheme that best fits their need. While existing characterization methods are continuously being improved, new ones are devised to cover project properties which have not been previously addressed. One such method, the Project Definition Rating Index (PDRI), has received limited consideration strictly as a classification scheme. Developed by the Construction Industry Institute (CII) in 1996, the PDRI has been refined over the last two decades as a method for evaluating a project's scope definition completeness during front-end planning (FEP). The main contribution of this study is a review of practical project classification methods, and a discussion of how PDRI can be used to classify projects based on their readiness in the FEP phase. The proposed model has been applied to 59 construction projects in Ontario, and the results are discussed.

Factors of English Language Learning and Acquisition at Bisha College of Technology

This paper participates in giving new vision and explains the learning and acquisition processes of English language by analyzing a certain context. Five important factors in English language acquisition and learning are discussed and suitable solutions are provided. The factors are compared with the learners' linguistic background at Bisha College of Technology BCT attempting to link the issues faced by students and the research done on similar situations. These factors are phonology, age of acquisition, motivation, psychology and courses of English. These factors are very important; because they interfere and affect specific learning processes at BCT context and general English learning situations.

Bioinformatics and Molecular Biological Characterization of a Hypothetical Protein SAV1226 as a Potential Drug Target for Methicillin/Vancomycin- Staphylococcus aureus Infections

Methicillin/multiple-resistant Staphylococcus aureus (MRSA) are infectious bacteria that are resistant to common antibiotics. A previous in silico study in our group has identified a hypothetical protein SAV1226 as one of the potential drug targets. In this study, we reported the bioinformatics characterization, as well as cloning, expression, purification and kinetic assays of hypothetical protein SAV1226 from methicillin/vancomycin-resistant Staphylococcus aureus Mu50 strain. MALDI-TOF/MS analysis revealed a low degree of structural similarity with known proteins. Kinetic assays demonstrated that hypothetical protein SAV1226 is neither a domain of an ATP dependent dihydroxyacetone kinase nor of a phosphotransferase system (PTS) dihydroxyacetone kinase, suggesting that the function of hypothetical protein SAV1226 might be misannotated on public databases such as UniProt and InterProScan 5.

Indirect Solar Desalination: Value Engineering and Cost Benefit Analysis

This study examines the feasibility of indirect solar desalination in oil producing countries in the Middle East and North Africa (MENA) region. It relies on value engineering (VE) and costbenefit with sensitivity analyses to identify optimal coupling configurations of desalination and solar energy technologies. A comparative return on investment was assessed as a function of water costs for varied plant capacities (25,000 to 75,000 m3/day), project lifetimes (15 to 25 years), and discount rates (5 to 15%) taking into consideration water and energy subsidies, land cost as well as environmental externalities in the form of carbon credit related to greenhouse gas (GHG) emissions reduction. The results showed reverse osmosis (RO) coupled with photovoltaic technologies (PVs) as the most promising configuration, robust across different prices for Brent oil, discount rates, as well as different project lifetimes. Environmental externalities and subsidies analysis revealed that a 16% reduction in existing subsidy on water tariffs would ensure economic viability. Additionally, while land costs affect investment attractiveness, the viability of RO coupled with PV remains possible for a land purchase cost

An Efficient Pixel Based Cervical Disc Localization

When neck pain is associated with pain, numbness, or weakness in the arm, shoulder, or hand, further investigation is needed as these are symptoms indicating pressure on one or more nerve roots. Evaluation necessitates a neurologic examination and imaging using an MRI/CT scan. A degenerating disc loses some thickness and is less flexible, causing inter-vertebrae space to narrow. A radiologist diagnoses an Intervertebral Disc Degeneration (IDD) by localizing every inter-vertebral disc and identifying the pathology in a disc based on its geometry and appearance. Accurate localizing is necessary to diagnose IDD pathology. But, the underlying image signal is ambiguous: a disc’s intensity overlaps the spinal nerve fibres. Even the structure changes from case to case, with possible spinal column bending (scoliosis). The inter-vertebral disc pathology’s quantitative assessment needs accurate localization of the cervical region discs. In this work, the efficacy of multilevel set segmentation model, to segment cervical discs is investigated. The segmented images are annotated using a simple distance matrix.

Effects of Biostimulant Application on Quali-Quantitative Characteristics of Cauliflower, Pepper and Fennel Crops under Organic and Conventional Fertilization

Nowadays, the main goal for modern horticultural production is an increase the quality. In recent years, the use of organic fertilizers or biostimulants that can be applied in agriculture to improve quali-quantitative crop yields has encountered increasing interest. Biostimulants are gaining importance also for their possible use in organic and sustainable agriculture, to avoid excessive fertilizer applications. Consecutive experimental trials were carried out in the Apulia region (southern Italy) on three herbaceous crops (cauliflower, pepper, fennel) grown in pots under conventional and organic fertilization systems without and with biostimulants. The aim was to determine the effects of three biostimulants (Siapton®10L, Micotech L, Lysodin Alga-Fert) on quali-quantitative yield characteristics. At harvest, the quali-quantitative yield characteristics of each crop were determined. All of the experimental data were subjected to analysis of variance (ANOVA), and when significant effects were detected, the means were compared using Tukey’s tests. These data show large differences in these yield characteristics between conventional and organic crops, particularly highlighting higher yields for the conventional crops, while variable results were generally observed when the biostimulants were applied. In this context, there were no effects of the biostimulants on the quantitative yield, whereas there were low positive effects on the qualitative characteristics, as related to higher dry matter content of cauliflower, and higher soluble solids content of pepper. Moreover, there were evident positive effects of the biostimulants with fennel, due to the lower nitrate content. These latter data are in line with most of the published literature obtained for other herbaceous crops.

Experimental Implementation of Model Predictive Control for Permanent Magnet Synchronous Motor

Fast speed drives for Permanent Magnet Synchronous Motor (PMSM) is a crucial performance for the electric traction systems. In this paper, PMSM is derived with a Model-based Predictive Control (MPC) technique. Fast speed tracking is achieved through optimization of the DC source utilization using MPC. The technique is based on predicting the optimum voltage vector applied to the driver. Control technique is investigated by comparing to the cascaded PI control based on Space Vector Pulse Width Modulation (SVPWM). MPC and SVPWM-based FOC are implemented with the TMS320F2812 DSP and its power driver circuits. The designed MPC for a PMSM drive is experimentally validated on a laboratory test bench. The performances are compared with those obtained by a conventional PI-based system in order to highlight the improvements, especially regarding speed tracking response.

Gold-Mediated Modification of Apoferritin Surface with Targeting Antibodies

To ensure targeting of apoferritin nanocarrier with encapsulated doxorubicin drug, we used a peptide linker based on a protein G with N-terminus affinity towards Fc region of antibodies. To connect the peptide to the surface of apoferritin, the C-terminus of peptide was made of cysteine with affinity to gold. The surface of apoferritin with encapsulated doxorubicin (APODOX) was coated either with gold nanoparticles (APODOX-Nano) or gold(III) chloride hydrate reduced with sodium borohydride (APODOX-HAu). The reduction with sodium borohydride caused a loss of doxorubicin fluorescent properties and probably accompanied with the loss of its biological activity. Fluorescent properties of APODOX-Nano were similar to the unmodified APODOX; therefore it was more suited for the intended use. To evaluate the specificity of apoferritin modified with antibodies, ELISA-like method was used with the surface of microtitration plate wells coated by the antigen (goat anti-human IgG antibodies). To these wells, the nanocarrier was applied. APODOX without the modification showed 5× lower affinity to the antigen than APODOX-Nano modified gold and targeting antibodies (human IgG antibodies).

Effects of Boron Compounds in Rabbits Fed High Protein and Energy Diet: A Metabolomic and Transcriptomic Approach

Current research is targeting new molecular mechanisms that underlie non-alcoholic fatty liver disease (NAFLD) and associated metabolic disorders like non-alcoholic steatohepatitis (NASH). Forty New Zealand White rabbits have been used and fed a high protein (HP) and energy diet based on grains and containing 11.76 MJ/kg. Boron added to 3 experimental groups’ drinking waters (30 mg boron/L) as boron compounds. Biochemical analysis including boron levels, and nuclear magnetic resonance (NMR) based metabolomics evaluation, and mRNA expression of peroxisome proliferator-activated receptor (PPAR) family was performed. LDLcholesterol concentrations alone were decreased in all the experimental groups. Boron levels in serum and feces were increased. Content of acetate was in about 2x higher for anhydrous borax group, at least 3x higher for boric acid group. PPARα mRNA expression was significantly decreased in boric acid group. Anhydrous borax attenuated mRNA levels of PPARγ, which was further suppressed by boric acid. Boron supplementation decreased the degenerative alterations in hepatocytes. Except borax group other boron groups did not have a pronounced change in tubular epithels of kidney. In conclusion, high protein and energy diet leads hepatocytes’ degenerative changes which can be prevented by boron supplementation. Boric acid seems to be more effective in this situation.

Prioritising the TQM Enablers and IT Resources in the ICT Industry: An AHP Approach

Total Quality Management (TQM) is a managerial approach that improves the competitiveness of the industry, meanwhile Information technology (IT) was introduced with TQM for handling the technical issues which is supported by quality experts for fulfilling the customers’ requirement. Present paper aims to utilise AHP (Analytic Hierarchy Process) methodology to priorities and rank the hierarchy levels of TQM enablers and IT resource together for its successful implementation in the Information and Communication Technology (ICT) industry. A total of 17 TQM enablers (nine) and IT resources (eight) were identified and partitioned into 3 categories and were prioritised by AHP approach. The finding indicates that the 17 sub-criteria can be grouped into three main categories namely organizing, tools and techniques, and culture and people. Further, out of 17 sub-criteria, three sub-criteria: top management commitment and support, total employee involvement, and continuous improvement got highest priority whereas three sub-criteria such as structural equation modelling, culture change, and customer satisfaction got lowest priority. The result suggests a hierarchy model for ICT industry to prioritise the enablers and resources as well as to improve the TQM and IT performance in the ICT industry. This paper has some managerial implication which suggests the managers of ICT industry to implement TQM and IT together in their organizations to get maximum benefits and how to utilize available resources. At the end, conclusions, limitation, future scope of the study are presented.

A System for Analyzing and Eliciting Public Grievances Using Cache Enabled Big Data

The system for analyzing and eliciting public grievances serves its main purpose to receive and process all sorts of complaints from the public and respond to users. Due to the more number of complaint data becomes big data which is difficult to store and process. The proposed system uses HDFS to store the big data and uses MapReduce to process the big data. The concept of cache was applied in the system to provide immediate response and timely action using big data analytics. Cache enabled big data increases the response time of the system. The unstructured data provided by the users are efficiently handled through map reduce algorithm. The processing of complaints takes place in the order of the hierarchy of the authority. The drawbacks of the traditional database system used in the existing system are set forth by our system by using Cache enabled Hadoop Distributed File System. MapReduce framework codes have the possible to leak the sensitive data through computation process. We propose a system that add noise to the output of the reduce phase to avoid signaling the presence of sensitive data. If the complaints are not processed in the ample time, then automatically it is forwarded to the higher authority. Hence it ensures assurance in processing. A copy of the filed complaint is sent as a digitally signed PDF document to the user mail id which serves as a proof. The system report serves to be an essential data while making important decisions based on legislation.

Influence of the Paint Coating Thickness in Digital Image Correlation Experiments

In the past decade, the use of digital image correlation (DIC) techniques has increased significantly in the area of experimental mechanics, especially for materials behavior characterization. This non-contact tool enables full field displacement and strain measurements over a complete region of interest. The DIC algorithm requires a random contrast pattern on the surface of the specimen in order to perform properly. To create this pattern, the specimen is usually first coated using a white matt paint. Next, a black random speckle pattern is applied using any suitable method. If the applied paint coating is too thick, its top surface may not be able to exactly follow the deformation of the specimen, and consequently, the strain measurement might be underestimated. In the present article, a study of the influence of the paint thickness on the strain underestimation is performed for different strain levels. The results are then compared to typical paint coating thicknesses applied by experienced DIC users. A slight strain underestimation was observed for paint coatings thicker than about 30μm. On the other hand, this value was found to be uncommonly high compared to coating thicknesses applied by DIC users.

Technical Determinants of Success in Quality Management Systems Implementation in the Automotive Industry

The popularity of quality management system models continues to grow despite the transitional crisis in 2008. Their development is associated with demands of the new requirements for entrepreneurs, such as risk analysis projects and more emphasis on supervision of outsourced processes. In parallel, it is appropriate to focus attention on the selection of companies aspiring to a quality management system. This is particularly important in the automotive supplier industry, where requirements transferred to the levels in the supply chain should be clear, transparent and fairly satisfied. The author has carried out a series of researches aimed at finding the factors that allow for the effective implementation of the quality management system in automotive companies. The research was focused on four groups of companies: 1) manufacturing (parts and assemblies for the purpose of sale or for vehicle manufacturers), 2) service (repair and maintenance of the car) 3) services for the transport of goods or people, 4) commercial (auto parts and vehicles). The identified determinants were divided into two types of criteria: internal and external, as well as hard and soft. The article presents the hard – technical factors that an automotive company must meet in order to achieve the goal of the quality management system implementation.