The Role of Middle Class in Forming of Consumption Habits of Market Institutions among Kazakh Households in Transition Period

Market institutions extension within transit societies  contributes to constituting the new type of middle class and  households livelihood strategies. The middle class households as an  example of prosperity in many cases encourage the ordinary ones to  do the same economic actions. Therefore, practices of using market  institutions by middle class households in transit societies, which are  mostly characterized by huge influence of traditional attitudes, can  carry habitual features for the whole society. Market institutions  consumption habit of the middle class households makes them  trendsetters of economic habits of other households while adapting to  the market economy. Moreover different social-economic positions  of households lead them to different consuming results such as  worsening or improving household economy due to indebtedness.  

An Improved Tie Force Method for Progressive Collapse Resistance of Precast Concrete Cross Wall Structures

Progressive collapse of buildings typically occurs  when abnormal loading conditions cause local damages, which leads  to a chain reaction of failure and ultimately catastrophic collapse. The  tie force (TF) method is one of the main design approaches for  progressive collapse. As the TF method is a simplified method, further  investigations on the reliability of the method is necessary. This study  aims to develop an improved TF method to design the cross wall  structures for progressive collapse. To this end, the pullout behavior of  strands in grout was firstly analyzed; and then, by considering the tie  force-slip relationship in the friction stage together with the catenary  action mechanism, a comprehensive analytical method was developed.  The reliability of this approach is verified by the experimental results  of concrete block pullout tests and full scale floor-to-floor joints tests  undertaken by Portland Cement Association (PCA). Discrepancies in  the tie force between the analytical results and codified specifications  have suggested the deficiency of TF method, hence an improved  model based on the analytical results has been proposed to address this  concern.  

Carbon Nanotubes Synthesized Using Sugar Cane as a Percursor

This article deals with the carbon nanotubes (CNT) synthesized from a novel precursor, sugar cane and Anodic Aluminum Oxide (AAO). The objective was to produce CNTs to be used as catalyst supports for Proton Exchange Membranes. The influence of temperature, inert gas flow rate and concentration of the precursor is presented. The CNTs prepared were characterized using TEM, XRD, Raman Spectroscopy, and the surface area determined by BET. The results show that it is possible to form CNT from sugar cane by pyrolysis and the CNTs are the type multi-walled carbon nanotubes. The MWCNTs are short and closed at the two ends with very small surface area of SBET= 3.691m,/g.

Optimal Trailing Edge Flap Positions of Helicopter Rotor for Various Thrust Coefficients to Solidity (Ct/σ) Ratios

This study aims to determine change in optimal locations of dual trailing-edge flaps for various thrust coefficient to solidity (Ct /σ) ratios of helicopter to achieve minimum hub vibration levels, with low penalty in terms of required trailing-edge flap control power. Polynomial response functions are used to approximate hub vibration and flap power objective functions. Single objective and multiobjective optimization is carried with the objective of minimizing hub vibration and flap power. The optimization result shows that the inboard flap location at low Ct /σ ratio move farther from the baseline value and at high Ct /σ ratio move towards the root of the blade for minimizing hub vibration.

An Approach for Optimization of Functions and Reducing the Value of the Product by Using Virtual Models

New developed approach for Functional Cost Analysis (FCA) based on virtual prototyping (VP) models in CAD/CAE environment, applicable and necessary in developing new products is presented. It is instrument for improving the value of the product while maintaining costs and/or reducing the costs of the product without reducing value. Five broad classes of VP methods are identified. Efficient use of prototypes in FCA is a vital activity that can make the difference between successful and unsuccessful entry of new products into the competitive word market. Successful realization of this approach is illustrated for a specific example using press joint power tool.

Transient Three Dimensional FE Modeling for Thermal Analysis of Pulsed Current Gas Tungsten Arc Welding of Aluminum Alloy

This paper presents the results of a study aimed at establishing the temperature distribution during the welding of aluminum alloy plates by Pulsed Current Gas Tungsten Arc Welding (PCGTAW) and Constant Current Gas Tungsten Arc Welding (CCGTAW) processes. Pulsing of the GTA welding current influences the dimensions and solidification rate of the fused zone, it also reduces the weld pool volume hence a narrower bead. In this investigation, the base material considered was aluminum alloy AA 6351 T6, which is finding use in aircraft, automobile and high-speed train components. A finite element analysis was carried out using ANSYS, and the results of the FEA were compared with the experimental results. It is evident from the study that the finite element analysis using ANSYS can be effectively used to model PCGTAW process for finding temperature distribution.

Numerical Analysis of Fractured Process in Locomotive Steel Wheels

Railway vehicle wheels are designed to operate in harsh environments and to withstand high hydrostatic contact pressures. This situation may result in critical circumstances, in particular wheel breakage. This paper presents a time history of a series of broken wheels during a time interval [2007-2008] belongs to locomotive fleet on Iranian Railways. Such fractures in locomotive wheels never reported before. Due to the importance of this issue, a research study has been launched to find the potential reasons of this problem. The authors introduce a FEM model to indicate how and where the wheels could have been affected during their operation. Then, the modeling results are presented and discussed in detail.

Dual-Network Memory Model for Temporal Sequences

In neural networks, when new patters are learned by a network, they radically interfere with previously stored patterns. This drawback is called catastrophic forgetting. We have already proposed a biologically inspired dual-network memory model which can much reduce this forgetting for static patterns. In this model, information is first stored in the hippocampal network, and thereafter, it is transferred to the neocortical network using pseudopatterns. Because temporal sequence learning is more important than static pattern learning in the real world, in this study, we improve our conventional  dual-network memory model so that it can deal with temporal sequences without catastrophic forgetting. The computer simulation results show the effectiveness of the proposed dual-network memory model.  

Optical Switching Based On Bragg Solitons in A Nonuniform Fiber Bragg Grating

In this paper, we consider the nonlinear pulse propagation through a nonuniform birefringent fiber Bragg grating (FBG) whose index modulation depth varies along the propagation direction. Here, the pulse propagation is governed by the nonlinear birefringent coupled mode (NLBCM) equations. To form the Bragg soliton outside the photonic bandgap (PBG), the NLBCM equations are reduced to the well known NLS type equation by multiple scale analysis. As we consider the pulse propagation in a nonuniform FBG, the pulse propagation outside the PBG is governed by inhomogeneous NLS (INLS) rather than NLS. We then discuss the formation of soliton in the FBG known as Bragg soliton whose central frequency lies outside but close to the PBG of the grating structure. Further, we discuss Bragg soliton compression due to a delicate balance between the SPM and the varying grating induced dispersion. In addition, Bragg soliton collision, Bragg soliton switching and possible logic gates have also been discussed.

Molecular Detection and Characterization of Infectious Bronchitis Virus from Libya

Infectious bronchitis virus (IBV) is a very dynamic and evolving virus, causing major economic losses to the global poultry industry. Recently, the Libyan poultry industry faced severe outbreak of respiratory distress associated with high mortality and dramatic drop in egg production. Tracheal and cloacal swabs were analyzed for several poultry viruses. IBV was detected using SYBR Green I real-time PCR detection based on the nucleocapsid (N) gene. Sequence analysis of the partial N gene indicated high similarity (~ 94%) to IBV strain 3382/06 that was isolated from Taiwan. Even though the IBV strain 3382/06 is more similar to that of the Mass type H120, the isolate has been implicated associated with intertypic recombinant of 3 putative parental IBV strains namely H120, Taiwan strain 1171/92 and China strain CK/CH/LDL/97I. Complete sequencing and antigenicity studies of the Libya IBV strains are currently underway to determine the evolution of the virus and its importance in vaccine induced immunity. In this paper we documented for the first time the presence of possibly variant IBV strain from Libya which required dramatic change in vaccination program.

A Multi Cordic Architecture on FPGA Platform

Coordinate Rotation Digital Computer (CORDIC) is a unique digital computing unit intended for the computation of mathematical operations and functions. This paper presents A multi CORDIC processor that integrates different CORDIC architectures on a single FPGA chip and allows the user to select the CORDIC architecture to proceed with based on what he wants to calculate and his needs. Synthesis show that radix 2 CORDIC has the lowest clock delay, radix 8 CORDIC has the highest LUT usage and lowest register usage while Hybrid Radix 4 CORDIC had the highest clock delay.

A Novel Application of Network Equivalencing Method in Time Domain to Precise Calculation of Dead Time in Power Transmission Title

Various studies have showed that about 90% of single line to ground faults occurred on High voltage transmission lines have transient nature. This type of faults is cleared by temporary outage (by the single phase auto-reclosure). The interval between opening and reclosing of the faulted phase circuit breakers is named “Dead Time” that is varying about several hundred milliseconds. For adjustment of traditional single phase auto-reclosures that usually are not intelligent, it is necessary to calculate the dead time in the off-line condition precisely. If the dead time used in adjustment of single phase auto-reclosure is less than the real dead time, the reclosing of circuit breakers threats the power systems seriously. So in this paper a novel approach for precise calculation of dead time in power transmission lines based on the network equivalencing in time domain is presented. This approach has extremely higher precision in comparison with the traditional method based on Thevenin equivalent circuit. For comparison between the proposed approach in this paper and the traditional method, a comprehensive simulation by EMTP-ATP is performed on an extensive power network.

Fractional Masks Based On Generalized Fractional Differential Operator for Image Denoising

This paper introduces an image denoising algorithm based on generalized Srivastava-Owa fractional differential operator for removing Gaussian noise in digital images. The structures of nxn fractional masks are constructed by this algorithm. Experiments show that, the capability of the denoising algorithm by fractional differential-based approach appears efficient to smooth the Gaussian noisy images for different noisy levels. The denoising performance is measured by using peak signal to noise ratio (PSNR) for the denoising images. The results showed an improved performance (higher PSNR values) when compared with standard Gaussian smoothing filter.

Spark Breakdown Voltage and Surface Degradation of Multiwalled Carbon Nanotube Electrode Surfaces

Silicon substrates coated with multiwalled carbon nanotubes (MWCNTs) were experimentally investigated to determine spark breakdown voltages relative to uncoated surfaces, the degree of surface degradation associated with the spark discharge, and techniques to minimize the surface degradation. The results may be applicable to instruments or processes that use MWCNT as a means of increasing local electric field strength and where spark breakdown is a possibility that might affect the devices’ performance or longevity. MWCNTs were shown to reduce the breakdown voltage of a 1mm gap in air by 30-50%. The relative decrease in breakdown voltage was maintained over gap distances of 0.5 to 2mm and gauge pressures of 0 to 4 bar. Degradation of the MWCNT coated surfaces was observed. Several techniques to improve durability were investigated. These included: chromium and gold-palladium coatings, tube annealing, and embedding clusters of MWCNT in a ceramic matrix.

Active Segment Selection Method in EEG Classification Using Fractal Features

BCI (Brain Computer Interface) is a communication machine that translates brain massages to computer commands. These machines with the help of computer programs can recognize the tasks that are imagined. Feature extraction is an important stage of the process in EEG classification that can effect in accuracy and the computation time of processing the signals. In this study we process the signal in three steps of active segment selection, fractal feature extraction, and classification. One of the great challenges in BCI applications is to improve classification accuracy and computation time together. In this paper, we have used student’s 2D sample t-statistics on continuous wavelet transforms for active segment selection to reduce the computation time. In the next level, the features are extracted from some famous fractal dimension estimation of the signal. These fractal features are Katz and Higuchi. In the classification stage we used ANFIS (Adaptive Neuro-Fuzzy Inference System) classifier, FKNN (Fuzzy K-Nearest Neighbors), LDA (Linear Discriminate Analysis), and SVM (Support Vector Machines). We resulted that active segment selection method would reduce the computation time and Fractal dimension features with ANFIS analysis on selected active segments is the best among investigated methods in EEG classification.

Degree of Milling Effects on the Sorghum (Sorghum bicolor) Flours, Physicochemical Properties and Kinetics of Starch Digestion

Two types of crushing were applied to grains of red sorghum: manual crushing using a mortar and pestle of kitchen and mechanical crushing using a hammer mill. The flours obtained at the end of these various crushing were filtered and subdivided in different fractions according to the diameters of the mesh of the sieves (0.16mm; 0.25mm; 0.315mm; 0.4mm, and 0.63mm…). Some physical, chemical and nutritional traits of these flours were evaluated using Association of Official Analytical Chemists (AOAC). In vitro digestibility of these flours was also studied with freezing of flour 1% like substrate and α-amylase from B. licheniformis (E.C.3.2.1.1; Megazyme, Wicklow, Ireland). The results revealed that the batches of flours which have the finest diameters as 0.16mm; 0.25mm are the richest one in nutrients and are also the most digestible. Also mechanical crushing is the best mean to obtain significant amount of flours. In conclusion, the type of crushing and the size of the particles have an impact on the final concentration of some nutrients of the flours obtained. Indeed, the finest particles (0.16mm – 0.25mm 0.315mm) obtained after sifting of the flours are more nutritive and have a better digestibility than others size. So the finest particles could be advised for management of cereals namely the sorghum for the production of the infantile foods.

Kinetics of Cu (II) Transport through Bulk Liquid Membrane with Different Membrane Materials

The kinetics of Cu(II) transport through a bulk liquid membrane with different membrane materials was investigated in this work. Three types of membrane materials were used: fresh cooking oil, waste cooking oil and kerosene, each of which was mixed with di-2-ethylhexylphosphoric acid (carrier) and tributylphosphate (modifier). Kinetic models derived from the kinetic laws of two consecutive irreversible first-order reactions were used to study the facilitated transport of Cu(II) across the source, membrane and receiving phases of bulk liquid membrane. It was found that the transport kinetics of Cu(II) across the source phase was not affected by different types of membrane materials but decreased considerably when the membrane materials changed from kerosene, waste cooking oil to fresh cooking oil. The rate constants of Cu(II) removal and recovery processes through the bulk liquid membrane were also determined.

Effects of Heavy Pumping and Artificial Groundwater Recharge Pond on the Aquifer System of Langat Basin, Malaysia

The paper aims at evaluating the effects of heavy groundwater withdrawal and artificial groundwater recharge of an ex-mining pond to the aquifer system of the Langat Basin through the three-dimensional (3D) numerical modeling. Many mining sites have been left behind from the massive mining exploitations in Malaysia during the England colonization era and from the last few decades. These sites are able to accommodate more than a million cubic meters of water from precipitation, runoff, groundwater, and river. Most of the time, the mining sites are turned into ponds for recreational activities. In the current study, an artificial groundwater recharge from an ex-mining pond in the Langat Basin was proposed due to its capacity to store >50 million m3 of water. The location of the pond is near the Langat River and opposite a steel company where >4 million gallons of groundwater is withdrawn on a daily basis. The 3D numerical simulation was developed using the Groundwater Modeling System (GMS). The calibrated model (error about 0.7 m) was utilized to simulate two scenarios (1) Case 1: artificial recharge pond with no pumping and (2) Case 2: artificial pond with pumping. The results showed that in Case 1, the pond played a very important role in supplying additional water to the aquifer and river. About 90,916 m3/d of water from the pond, 1,173 m3/d from the Langat River, and 67,424 m3/d from the direct recharge of precipitation infiltrated into the aquifer system. In Case 2, due to the abstraction of groundwater from a company, it caused a steep depression around the wells, river, and pond. The result of the water budget showed an increase rate of inflow in the pond and river with 92,493m3/d and 3,881m3/d respectively. The outcome of the current study provides useful information of the aquifer behavior of the Langat Basin.

Cloning and Functional Characterization of Promoter Elements of the D Hordein Gene from the Barley (Hordeum vulgare L.) by Bioinformatic Tools

The low level of foreign genes expression in transgenic plants is a key factor that limits plant genetic engineering. Because of the critical regulatory activity of the promoters on gene transcription, they are studied extensively to improve the efficiency of the plant transgenic system. The strong constitutive promoters, such as CaMV 35S promoter and Ubiqutin 1 maize are usually used in plant biotechnology research. However the expression level of the foreign genes in all tissues is often undesirable. But using a strong seed-specific promoter to limit gene expression in the seed solves such problems. The purpose of this study is to isolate one of the seed specific promoters of Hordeum vulgare. So one of the common varieties of Hordeum vulgare in Iran was selected and their genomes extracted then the D-Hordein promoter amplified using the specific designed primers. Then the amplified fragment of the insert cloned in an appropriate vector and then transformed to E. coli. At last for the final admission of accuracy the cloned fragments sent for sequencing. Sequencing analysis showed that the cloned fragment DHPcontained motifs; like TATA box, CAAT-box, CCGTCC-box, AMYBOX1 and E-box etc., which constituted the seed-specific promoter activity. The results were compared with sequences existing in data banks. D-Hordein promoters of Alger has 99% similarity at 100 % coverage. The results also showed that D-Hordein promoter of barley and HMW promoter of wheat are too similar.