Effect of Synthetic Queen Mandibular Pheromone on Pollination of Cotton by Honey Bees, Apis mellifera

The effectiveness of a commercial bee attractant, synthetic honey bee queen mandibular pheromone (Fruit Boost®) for enhancing pollination of Gossypium hirsutum was evaluated in a transgenic (Bt) cotton crop. The study assessed the number of bee visitations to blossoms of plants treated with Fruit Boost® as well, as effects on fruit set, yield, and lint quality. Bee activity on plots sprayed with pheromone concentrations of 50 and 500 queen equivalents (QEQ) /ha did not differ significantly from water-only control, on the day of application or the subsequent day. Application of the pheromone did not increase fruit set, yield, or lint quality. Two consecutive pheromone applications, applied two days apart, were not significantly different from a single application for any parameter.

Analytical Based Truncation Principle of Higher-Order Solution for a x1/3 Force Nonlinear Oscillator

In this paper, a modified harmonic balance method based an analytical technique has been developed to determine higher-order approximate periodic solutions of a conservative nonlinear oscillator for which the elastic force term is proportional to x1/3. Usually, a set of nonlinear algebraic equations is solved in this method. However, analytical solutions of these algebraic equations are not always possible, especially in the case of a large oscillation. In this article, different parameters of the same nonlinear problems are found, for which the power series produces desired results even for the large oscillation. We find a modified harmonic balance method works very well for the whole range of initial amplitudes, and the excellent agreement of the approximate frequencies and periodic solutions with the exact ones has been demonstrated and discussed. Besides these, a suitable truncation formula is found in which the solution measures better results than existing solutions. The method is mainly illustrated by the x1/3 force nonlinear oscillator but it is also useful for many other nonlinear problems.

Microstructure and Mechanical Characterization of Heat Treated Stir Cast Silica (Sea Sand) Reinforced 7XXX Al Alloy MMCs

Metal matrix composites consists of a metallic matrix combined with dispersed particulate phase as reinforcement. Aluminum alloys have been the primary material of choice for structural components of aircraft since about 1930. Well known performance characteristics, known fabrication costs, design experience, and established manufacturing methods and facilities, are just a few of the reasons for the continued confidence in 7XXX Al alloys that will ensure their use in significant quantities for the time to come. Particulate MMCs are of special interest owing to the low cost of their raw materials (primarily natural river sand here) and their ease of fabrication, making them suitable for applications requiring relatively high volume production. 7XXX Al alloys are precipitation hardenable and therefore amenable for thermomechanical treatment. Al–Zn alloys reinforced with particulate materials are used in aerospace industries in spite of the drawbacks of susceptibility to stress corrosion, poor wettability, poor weldability and poor fatigue resistance. The resistance offered by these particulates for the moving dislocations impart secondary hardening in turn contributes strain hardening. Cold deformation increases lattice defects, which in turn improves the properties of solution treated alloy. In view of this, six different Al–Zn–Mg alloy composites reinforced with silica (3 wt. % and 5 wt. %) are prepared by conventional semisolid synthesizing process. The cast alloys are solution treated and aged. The solution treated alloys are further severely cold rolled to enhance the properties. The hardness and strength values are analyzed and compared with silica free Al – Zn-Mg alloys. Precipitation hardening phenomena is accelerated due to the increased number of potential sites for precipitation. Higher peak hardness and lesser aging time are the characteristics of thermo mechanically treated samples. For obtaining maximum hardness, optimum number and volume of precipitate particles are required. The Al-5Zn-1Mg with 5% SiO2 alloy composite shows better result.

On the Joint Optimization of Performance and Power Consumption in Data Centers

We model the process of a data center as a multi- objective problem of mapping independent tasks onto a set of data center machines that simultaneously minimizes the energy consump¬tion and response time (makespan) subject to the constraints of deadlines and architectural requirements. A simple technique based on multi-objective goal programming is proposed that guarantees Pareto optimal solution with excellence in convergence process. The proposed technique also is compared with other traditional approach. The simulation results show that the proposed technique achieves superior performance compared to the min-min heuristics, and com¬petitive performance relative to the optimal solution implemented in UNDO for small-scale problems.

Dripping Modes of Newtonian Liquids: The Effect of Nozzle Inclination

The dripping modes for a Newtonian liquid of viscosity µ emanating from an inclined nozzle at flow rate Q is investigated experimentally. As the liquid flow rate Q increases, starting with period-1 with satellite drops, the system transitions to period-1 dripping without satellite, then to limit cycle before showing chaotic responses. Phase diagrams showing the changes in the transitions between the different dripping modes for different nozzle inclination angle q is constructed in the dimensionless (Q, µ) space.

Hydrodynamic Characteristics of a New Sewer Overflow Screening Device: CFD Modeling & Analytical Study

Some of the major concerns regarding sewer overflows to receiving water bodies include serious environmental, aesthetic and public health problems. A noble self-cleansing sewer overflow screening device having a sewer overflow chamber, a rectangular tank and a slotted ogee weir to capture the gross pollutants has been investigated. Computational Fluid Dynamics (CFD) techniques are used to simulate the flow phenomena with two different inlet orientations; parallel and perpendicular to the weir direction. CFD simulation results are compared with analytical results. Numerical results show that the flow is not uniform (across the width of the inclined surface) near the top of the inclined surface. The flow becomes uniform near the bottom of the inclined surface, with significant increase of shear stress. The simulation results promises for an effective and efficient self-cleansing sewer overflow screening device by comparing hydrodynamic results.

Experimental Study of Strength Recovery from Residual Strength on Kaolin Clay

Strength recovery effect from the residual-state of shear is not well address in scientific literature. Torsional ring shear strength recovery tests on kaolin clay using rest periods up to 30 days are performed at the effective normal stress 100kN/m2. Test results shows that recovered strength measured in the laboratory is slightly noticeable after rest period of 3 days, but recovered strength lost after very small shear displacement. This paper mainly focused on the strength recovery phenomenon from the residual strength of kaolin clay based on torsional ring shear test results. Mechanisms of recovered strength are also discussed.

Relative Suitability Evaluation of Two Methods of Particle-Size Analysis for Selected Soils of Sudan Savanna of Nigeria

The two widely used methods base on the sedimentation principle (Bouyoucos hydrometer and International pipette) for particle-size analysis were comparatively evaluated on soils collected from various locations in Sudan savanna of Nigeria particularly from Sokoto and Zamfara States. The hydrometer method under-estimated the silt and over-estimated the clay content. Also, the hydrometer reading proved difficult and tended to submerge when floated for clay reading in the suspension of very sandy soils (900g kg-1 sand). Furthermore, the results from the two methods were validated by subjecting the data to USDA soil textural triangle to determine their textural class names. The outcome was that 91.67 % of the experimental soils retained the same textural class names irrespective of the method. Thus, Bouyoucos hydrometer method may conveniently find a place in routine work in view of its simplicity, rapidity, and strong correlation with the pipette method.

Contact Angle Measurement of the Vinyl Ester Matrix Nanocomposites Based On Layered Silicate

Contact angle measurement was utilized in order to study the subject of the wettability and surface chemistry of the nanocomposites materials. Water and glycerol droplets were used in this study. The incorporation of layered silicate into the vinyl ester matrix helped to improve the wettability and reduced the θ values of both liquids used. The addition of 2 wt.% clay loading reduced the θ values of water and glycerol by up to 21% and 6% respectively. Likewise, the incorporation of 4 wt.% clay loading reduced the water and glycerol θ values by 49% and 38% respectively. Also this study confirms the findings in the literature regarding the relationship between the intercalation nanocomposites level and the wettability. Wide Angle X-ray Diffraction, Scanning Electron Microscopy and Transmission Electron Microscopy were utilised in order to characterise the interlamellar structure of nanocomposites.

Study of the Particle Size Effect on Bubble Rise Velocities in a Three-Phase Bubble Column

Experiments were performed in a three-phase bubble column to study variations of bubble rise velocities. The dynamic gas disengagement (DGD) technique and the fast response pressure transducers were utilized to investigate the bubble rise in the column. The superficial gas velocity of large bubbles and small bubbles, the rise velocities of larger and small bubble fractions were studied considering the effect of particle sizes. The results show that the superficial gas velocity associated with large bubbles linearly increase as superficial gas velocity increasing. Particle size has little effect on the both large and small bubble superficial gas velocities. The rise velocities of larger bubble fractions are larger than that of small bubble fractions, and it had different tendency at low and high superficial gas velocities when changing the particle sizes. The rise velocities of small bubble fractions increased and then had a decrease tendency when the particle size became greater.

Magnetoviscous Effects on Axi-Symmetric Ferrofluid Flow over a Porous Rotating Disk with Suction/Injection

The present study is carried out to investigate the magneto-viscous effects on incompressible ferrofluid flow over a porous rotating disc with suction or injection on the surface of the disc subjected to a magnetic field. The flow under consideration is axi-symmetric steady ferrofluid flow of electrically non-conducting fluid. Karman’s transformation is used to convert the governing boundary layer equations involved in the problem to a system of non linear coupled differential equations. The solution of this system is obtained by using power series approximation. The flow characteristics i.e. radial, tangential, axial velocities and boundary layer displacement thickness are calculated for various values of MFD (magnetic field dependent) viscosity and for different values of suction injection parameter. Besides this, skin friction coefficients are also calculated on the surface of the disk. The results thus obtained are presented numerically and graphically in the paper.

Aged Society: A Pitfall

The aging of the workforce is occurring globally and has significant impact on organizations. The Malaysian population is ageing. Although, not as quickly as the populations of a number of Asian nations, or of parts of Europe; the rate is sufficient to cause a concern. The life expectancy of Malaysians has increased in year 2012 with an average of 73.8 years or equal to 71.1 years for males and 76.7 years for females. The birth and death rates are 26.05 births/1,000 population and 5.29 deaths/1,000 population respectively. These figures have placed a greater liability on the government’s shoulder, and have become a push factor for the country to revise a new retirement age for the public servants. The ‘aged population’ impinged on the new challenges faced by the Malaysian government, which had to deal with an unproductive aged workforce. A new retirement age from 58 to 60 years old has been introduced and this could have a positive effect on this cohort, in maintaining financial security. However, keeping older employees might affect organizations’ performance and productivity. The organizations need to pay more attention on them, since they are less effective and might be affected by numerous health problems. An innovative culture should be introduced and this could be a good indicator for organizations that deal with these ‘expensive’ workers.

Fermentable Sugars from Palm Empty Fruit Bunch Biomass for Bioethanol Production

This study investigated the effect of a dilute acid, lime and ammonia aqueous pretreatment on the fermentable sugars conversion from empty fruit bunch (EFB) biomass. The dilute acid treatment was carried out in an autoclave, at 121ºC with 4% of sulfuric acid. In the lime pretreatment, 3 wt % of calcium hydroxide was used, whereas the third method was done by soaking EFB with 28% ammonia solution. The EFB biomass was then subjected to a two-stage-acid hydrolysis process. Subsequently, the hydrolysate was fermented by using instant baker’s yeast to produce bioethanol. The highest glucose yield was 890 mg/g of biomass, obtained from the sample which underwent lime pretreatment. The highest bioethanol yield of 6.1mg/g of glucose was achieved from acid pretreatment. This showed that the acid pretreatment gave the most fermentable sugars compared to the other two pretreatments.

Theoretical Density Study of Winding Yarns on Spool

The aim of work is to define the distribution density of winding yarn on cylindrical and conical bobbins. It is known that parallel winding gives greater density and more regular distribution, but the unwinding of yarn is much more difficult for following process. The conical spool has an enormous advantage during unwinding and may contain a large amount of yarns, but the density distribution is not regular because of difference in diameters. The variation of specific density over the reel height is explained generally by the sudden change of winding speed due to direction movement variation of yarn. We determined the conditions of uniform winding and developed a calculate model to the change of the specific density of winding wire over entire spool height.

Tuning Cubic Equations of State for Supercritical Water Applications

Cubic equations of state (EoS), popular due to their simple mathematical form, ease of use, semi-theoretical nature and reasonable accuracy, are normally fitted to vapor-liquid equilibrium P-v-T data. As a result, they often show poor accuracy in the region near and above the critical point. In this study, the performance of the renowned Peng-Robinson (PR) and Patel-Teja (PT) EoS’s around the critical area has been examined against the P-v-T data of water. Both of them display large deviations at critical point. For instance, PR-EoS exhibits discrepancies as high as 47% for the specific volume, 28% for the enthalpy departure and 43% for the entropy departure at critical point. It is shown that incorporating P-v-T data of the supercritical region into the retuning of a cubic EoS can improve its performance at and above the critical point dramatically. Adopting a retuned acentric factor of 0.5491 instead of its genuine value of 0.344 for water in PR-EoS and a new F of 0.8854 instead of its original value of 0.6898 for water in PT-EoS reduces the discrepancies to about one third or less.

Intelligent Face-Up CMP System Integrated with On-Line Optical Measurements

An innovative design for intelligent Chemical Mechanical Polishing (CMP) system is proposed and verified by experiments in this report. On-line measurement and real-time feedback are integrated to eliminate the shortcomings of traditional approaches, e.g., the batch-to-batch discrepancy of required polishing time, over consumption of chemical slurry, and non-uniformity across the wafer. The major advantage of the proposed method is that the finish of local surface roughness can be consistent, no matter where the inner-ring region or outer-ring region is concerned. Secondly, it is able to eliminate the Edge effect. Conventionally, the interfacial induced stress near the wafer edge is generally much higher than that near the wafer center. At last, by using the proposed intelligent chemical mechanical polishing strategy, the cost of the entire machining cycle can be much reduced while the quality of the finished goods certainly upgraded.

A Comparative Studies on Methanesulfonic and p-Touluene Sulfonic Acid Incorporated Polyacrylamide Gel Polymer Electrolyte for Tin-Air Battery

This study was focused on polymer electrolytes containing methanesulfonic acid (MSA) and p-toluene sulfonic acid (pTSA) mixed with polyacrylamide (PAAm) respectively. Impedance Spectroscopy technique has been employed to compare the ionic conductivity of these polymer electrolytes. The ionic conductivity of the PAAm hydrogel electrolytes increase upon adding the sulfonic acids. Ionic conductivity of PAAm-pTSA is higher than PAAm-MSA. The electrochemical performance evaluations were done with the tin-air cells discharge at zero current for 30minutes and at constant current density of 2.5, 5, 7.5, 10, 12.5 and 15mA/cm2. The tin-air cell of PAAm-MSA produce higher specific discharge capacity compared to PAAm-pTSA. Open-circuit voltage measurement revealed a higher voltage for tin-air cell of PAAm-MSA which is 1.27V.

Improved Rake Receiver Based On the Signal Sign Separation in Maximal Ratio Combining Technique for Ultra-Wideband Wireless Communication Systems

At receiving high data rate in ultra wideband (UWB) technology for many users, there are multiple user interference and inter-symbol interference as obstacles in the multi-path reception technique. Since the rake receivers were designed to collect many resolvable paths, even more than hundred of paths. Rake receiver implementation structures have been proposed towards increasing the complexity for getting better performances in indoor or outdoor multi-path receivers by reducing the bit error rate (BER). So several rake structures were proposed in the past to reduce the number of combining and estimating of resolvable paths. To this aim, we suggested two improved rake receivers based on signal sign separation in the maximal ratio combiner (MRC), called positive-negative MRC selective rake (P-N/MRC-S-rake) and positive-negative MRC partial rake (P-N/MRC-S-rake) receivers. These receivers were introduced to reduce the complexity with less number of fingers and improving the performance with low BER. Before decision circuit, there is a comparator to compare between positive quantity and negative quantity to decide whether the transmitted bit is 1 or 0. The BER was driven by MATLAB simulation with multi-path environments for impulse radio time-hopping binary phase shift keying (TH-BPSK) modulation and the results were compared with those of conventional rake receivers.

Retrofitting of Beam-Column Joint Using CFRP and Steel Plate

This paper presents the retrofitting of beam-column joint using CFRP (Carbon Fiber Reinforced Polymer) and steel plate. This specimen was tested until failure up to 1.0% drift. This joint suffered severe damages and diagonal cracks at upper crack at upper column before retrofitted. CFRP were wrapped at corbel, bottom and top of the column. Steel plates with bonding were attached to the two beams and the jointing system. This retrofitted specimen is tested again under lateral cyclic loading up 1.75% drift. Visual observations show that the cracks started at joint when 0.5% drift applied at top of column. Damage of retrofitted beam-column joint occurred inside the CFRP and it cannot be seen from outside. Analysis of elastic stiffness, lateral strength, ductility, hysteresis loops and equivalent viscous damping shows that these values are higher than before retrofitting. Therefore, it is recommended to use this type of retrofitting method for beam-column joint with corbel which suffers severe damage after the earthquake.

Close Loop Controlled Current Nerve Locator

Successful regional anesthesia depends upon precise location of the peripheral nerve or nerve plexus. Locating peripheral nerves is preferred to be done using nerve stimulation. In order to generate a nerve impulse by electrical means, a minimum threshold stimulus of current “rheobase” must be applied to the nerve. The technique depends on stimulating muscular twitching at a close distance to the nerve without actually touching it. Success rate of this operation depends on the accuracy of current intensity pulses used for stimulation .In this paper, we will discuss a circuit and algorithm for closed loop control for the current, theoretical analysis and test results is discussed and results is compared to previous techniques.