DC Bus Voltage Regulator for Renewable Energy Based Microgrid Application

Renewable Energy based microgrids are being considered to provide electricity for the expanding energy demand in the grid distribution network and grid isolated areas. The technical challenges associated with the operation and controls are immense. Electricity generation by Renewable Energy Sources is of stochastic nature such that there is a demand for regulation of voltage output in order to satisfy the standard loads’ requirements. In a renewable energy based microgrid, the energy sources give stochastically variable magnitude AC or DC voltages. AC voltage regulation of micro and mini sources pose practical challenges as well as unbearable costs. It is therefore practically and economically viable to convert the voltage outputs from stochastic AC and DC voltage sources to constant DC voltage to satisfy various DC loads including inverters which ultimately feed AC loads. This paper presents results obtained from SEPIC converter based DC bus voltage regulator as a case study for renewable energy microgrid application. Real-Time Simulation results show that upon appropriate choice of controller parameters for control of the SEPIC converter, the output DC bus voltage can be kept constant regardless of wide range of voltage variations of the source. This feature is particularly important in the situation that multiple renewable sources are to be integrated to supply a microgrid under main grid integration or isolated modes of operation.

Thermal Properties of Chitosan-Filled Empty Fruit Bunches Filter Media

Non-woven fibrous filter media from empty fruit bunches were fabricated by using chitosan as a binder. Chitosan powder was dissolved in a 1 wt% aqueous acetic acid, and 1 wt% to 4 wt% of chitosan solutions was prepared. Chitosan-filled empty fruit bunches filter media have been prepared via wet-layup method. Thermogravimetric analysis (TGA) was performed to study various thermal properties of the fibrous filter media. It was found that the fibrous filter media have undergone several decomposition stages over a range of temperatures as revealed by TGA thermo-grams, where the temperature for 10% weight loss for chitosan-filled EFB filter media and binder-less filter media was at 150oC and 300oC, respectively.

Guidelines for Selecting the Appropriate Heel Insert for Long-Standing Ladies

Feet and ankles are parts of human body that receive high-pressure in every day. Feet disorders such as ankle sprain, achilles tendonitis, heel pain, and plantar fasciitis are very common. There are many causes for these feet disorders such as wearing high heels, obesity, sports activity, and standing for a long time. There are many reliefs for feet disorders such as heel insert. However, they come in various shapes and use different materials. There are no specifications in which type is suitable for specific user. This has led to the proposed research to provide guidelines for selecting the appropriate heel insert for ladies who face with long-standing carriers. This research uses contact-measuring techniques to test forces, contact area, and pressure acting on a person’s feet in various standing positions with different insert materials and shapes. The proper material for making insert will be presented and discussed.

Reduction of Rotor-Bearing-Support Finite Element Model through Substructuring

Due to simplicity and low cost, rotordynamic system is often modeled by using lumped parameters. Recently, finite elements have been used to model rotordynamic system as it offers higher accuracy. However, it involves high degrees of freedom. In some applications such as control design, this requires higher cost. For this reason, various model reduction methods have been proposed. This work demonstrates the quality of model reduction of rotor-bearing-support system through substructuring. The quality of the model reduction is evaluated by comparing some first natural frequencies, modal damping ratio, critical speeds, and response of both the full system and the reduced system. The simulation shows that the substructuring is proven adequate to reduce finite element rotor model in the frequency range of interest as long as the number and the location of master nodes are determined appropriately. However, the reduction is less accurate in an unstable or nearly-unstable system.

Revolving Ferrofluid Flow in Porous Medium with Rotating Disk

An attempt has been made to study the effect of rotation on incompressible, electrically non-conducting ferrofluid in porous medium on Axi-symmetric steady flow over a rotating disk excluding thermal effects. Here, we solved the boundary layer equations with boundary conditions using Neuringer-Rosensweig model considering the z-axis as the axis of rotation. The non linear boundary layer equations involved in the problem are transformed to the non linear coupled ordinary differential equations by Karman's transformation and solved by power series approximations. Besides numerically calculating the velocity components and pressure for different values of porosity parameter with the variation of Karman's parameter we have also calculated the displacement thickness of boundary layer, the total volume flowing outward the z-axis and angle between wall and ferrofluid. The results for all above variables are obtained numerically and discussed graphically.

Development of Underactuated Robot Hand Using Cross Section Deformation Spring

This paper describes an underactuated robot hand operated by low-power actuators. It can grasp objects of various shapes using easy operations. This hand is suitable for use as a lightweight prosthetic hand that can grasp various objects using few input channels. To realize operations using a low-power actuator, a cross section deformation spring is proposed. The design procedure of the underactuated robot finger is proposed to realize an adaptive grasping movement. The validity of this mechanism and design procedure are confirmed through an object grasping experiment. Results demonstrate the effectiveness of across section deformation spring in reducing the actuator power. Moreover, adaptive grasping movement is realized by an easy operation.

Development of Mobile Application for Energy Consumption Assessment of University Buildings

With an increase in the interest in the energy conservation for buildings, and the emergence of many methods and easily-understandable approaches to it, energy conservation has now become the public’s main interest, as compared to in the past when it was only focused upon by experts. This study aims to help the occupants of a building to understand the energy efficiency and consumption of the building by providing them information on the building’s energy efficiency through a mobile application. The energy performance assessment models are proposed on the basis of the actual energy usage and building characteristics such as the architectural scheme and the building equipment. The university buildings in Korea are used as a case to demonstrate the mobile application.

The Biomechanics of Cycling with a Transtibial Prosthesis: A Case Study of a Professional Cyclist

The article deals with biomechanics of cyclist with unilateral transtibial amputation. Transtibial amputation completely removes ankle and part of muscles of a lower leg which are responsible for production of force during pedaling and causes significant geometric and power asymmetry between the limbs during cycling movement. The primary goal of this work is to assess the effects of length adjustment of the crank on the kinematics and muscle activity of cyclist. The paper presents experimental work, which aims to find a suitable ratio of the length of kinematic components to improve overall athletic performance. The study presents the results of the kinematic analysis of the cycling movement with different crank length realized by tracking camera system together with the results of muscle activity measurements captured by electromyography and measurement of forces in the cranks by strain gauges.

Study on Network-Based Technology for Detecting Potentially Malicious Websites

Cyber terrors against specific enterprises or countries have been increasing recently. Such attacks against specific targets are called advanced persistent threat (APT), and they are giving rise to serious social problems. The malicious behaviors of APT attacks mostly affect websites and penetrate enterprise networks to perform malevolent acts. Although many enterprises invest heavily in security to defend against such APT threats, they recognize the APT attacks only after the latter are already in action. This paper discusses the characteristics of APT attacks at each step as well as the strengths and weaknesses of existing malicious code detection technologies to check their suitability for detecting APT attacks. It then proposes a network-based malicious behavior detection algorithm to protect the enterprise or national networks.

Impacts of Building Design Factors on Auckland School Energy Consumptions

This study focuses on the impact of school building design factors on winter extra energy consumption which mainly includes space heating, water heating and other appliances related to winter indoor thermal conditions. A number of Auckland schools were randomly selected for the study which introduces a method of using real monthly energy consumption data for a year to calculate winter extra energy data of school buildings. The study seeks to identify the relationships between winter extra energy data related to school building design data related to the main architectural features, building envelope and elements of the sample schools. The relationships can be used to estimate the approximate saving in winter extra energy consumption which would result from a changed design datum for future school development, and identify any major energy-efficient design problems. The relationships are also valuable for developing passive design guides for school energy efficiency.

Experimental Study and Analysis of Parabolic trough Collector with Various Reflectors

A solar powered air heating system using parabolic trough collector was experimentally investigated. In this experimental setup, the reflected solar radiations were focused on absorber tube which was placed at focal length of the parabolic trough. In this setup, air was used as working fluid which collects the heat from absorber tube. To enhance the performance of parabolic trough, collector with different type of reflectors were used. It was observed For Aluminum sheet maximum temperature is 52.3ºC, which 24.22% more than steel sheet as reflector and 8.5% more than Aluminum foil as reflector, also efficiency by using Aluminum sheet as reflector compared to steel sheet as reflector is 61.18% more. Efficiency by using Aluminum sheet as reflector compared to Aluminum foil as reflector is 18.98% more.

A Comparison of Transdiagnostic Components in Generalized Anxiety Disorder, Unipolar Mood Disorder and Nonclinical Population

Background: Dimensional and transdiagnostic approaches as a result of high comorbidity among mental disorders have captured researchers and clinicians interests for exploring the latent factors to development and maintenance of some psychological disorders. The goal of present study is comparing some of these common factors between generalized anxiety disorder and unipolar mood disorder. Methods: 27 patients with generalized anxiety disorder, 29 patients with depression disorder were recruited by using SCID-I and 69 non-clinical populations were selected by using GHQ cut off point. MANCOVA was used for analyzing data. Results: The results show that worry, rumination, intolerance of uncertainty, maladaptive metacognitive beliefs, and experiential avoidance were all significantly different between GAD and unipolar mood disorder groups. However, there weren’t any significant differences in difficulties in emotion regulation and neuroticism between GAD and unipolar mood disorder groups. Discussion: Results indicate that although there are some transdiagnostic and common factors in GAD and unipolar mood disorder, there may be some specific vulnerability factors for each disorder. Further study is needed for answering these questions.

Comparison of Numerical and Theoretical Friction Effect in the Wire Winding for Reinforced Structures with Wire Winding

In the article, the wire winding process for the reinforcement of a pressure vessel frame has been studied. Firstly, the importance of the wire winding method has been explained. The main step in the design process is the methodology axial force control and wire winding process. The hot isostatic press and wire winding process introduce. With use the equilibrium term in the pressure vessel and frame, stresses in the frame wires analyzed. A case study frame was studied to control axial force in the hot isostatic press. Frame and them wires simulated then friction effect and wires effect in elastic yoke in the simulation model considered. Then theoretical and simulate resulted compare and vessel pressure import to frame because we assurance wire wounded not received to yielding point.   

Solvent Effect on Antioxidant Activity and Total Phenolic Content of Betula alba and Convolvulus arvensi

The potential of using herbal Betula alba (BA) and Convolvulus arvensis (CA) as a natural antioxidant for food applications were investigated. Each plant extract was prepared by using pure ethanol, different concentration of ethanol aqueous solutions, including 50% and 75%, 50% methanol aqueous and water. Total phenolic content (TPC) was determined using Folin–Ciocalteau method and antioxidant activity were analyzed by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals, trolox equivalent antioxidant capacity (TEAC), Oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) respectively. Ethanol extract of CA exhibited the highest TPC and antioxidant activity; however BA showed varies of antioxidant activity value in each assay. The BA and CA exhibit the potential sources of natural antioxidant for food commodities.

Model Membrane from Shed Snake Skins

In this project we are interested in studying different kinds of shed snake skins in order to apply them as a model membrane for pharmaceutical purposes instead of human stratum corneum. Many types of shed snake skins as well as model drugs were studied by different techniques. The data will give deeper understanding about the interaction between drugs and model membranes and may allow us to choose the suitable model membrane for studying the effect of pharmaceutical products.

Walkability as a Strategy towards Inclusive Communities: Case of a Portuguese Small Town

The United Nations has defined the inclusive community as “…promoting growth with equity, a place where everyone, regardless of their economic means, gender, race, ethnicity or religion, is enabled and empowered to fully participate in the social, economic and political opportunities that cities have to offer”. In this paper, the concept of walkability is viewed as an important tool towards the planning and future development of more inclusive communities. Walking is the cheapest and cleanest mode of travel available to all providing large benefits to both health and local economic development. To demonstrate the validity of this strategy a set of parameters, selected from existing research, were measure, compared and discussed in the existing and proposed scenarios of a Portuguese small town using GIS software.

Evaluation of Features Extraction Algorithms for a Real-Time Isolated Word Recognition System

Paper presents an comparative evaluation of features extraction algorithm for a real-time isolated word recognition system based on FPGA. The Mel-frequency cepstral, linear frequency cepstral, linear predictive and their cepstral coefficients were implemented in hardware/software design. The proposed system was investigated in speaker dependent mode for 100 different Lithuanian words. The robustness of features extraction algorithms was tested recognizing the speech records at different signal to noise rates. The experiments on clean records show highest accuracy for Mel-frequency cepstral and linear frequency cepstral coefficients. For records with 15 dB signal to noise rate the linear predictive cepstral coefficients gives best result. The hard and soft part of the system is clocked on 50 MHz and 100 MHz accordingly. For the classification purpose the pipelined dynamic time warping core was implemented. The proposed word recognition system satisfy the real-time requirements and is suitable for applications in embedded systems.

Design of Middleware for Mobile Group Control in Physical Proximity

This paper is about middleware which enables group-user applications on mobile devices in physical proximity to interact with other devices without intervention of a central server. Requirements of the middleware are identified from service usage scenarios, and the functional architecture of the middleware is specified. These requirements include Group Management, Synchronization, and Resource Management. Group Management needs to provide various capabilities to such applications with respect to managing multiple users (e.g., creation of groups, discovery of group or individual users, member join/leave, election of a group manager and service-group association) using D2D communication technology. We designed the middleware for the above requirements on the Android platform.

Intertidal Fixed Stake Net Trap (Hadrah) Fishery in Kuwait: Distribution, Catch Rate and Species Composition

Intertidal fixed stake net trap (Hadrah) is one of the oldest fishing gears used throughout the Arabian Gulf countries since the 1800s and also one of most the efficient methods of capturing fish from the intertidal area. This study describes the hadrah fishery in Kuwait. From October 2001 to December 2002, more than 37,372 specimens representing 95 species (89 fish, 2 mollusks and 4 crustaceans) were measured from hadrah, located in three different areas along Kuwait's coast. In Kuwait Bay, catch rates averaged 62 kg/sir-day (from 14 kg/sir-day in February to 160 kg/sir-day in October 2002). Commercial species accounted for 41% of the catches. Catches from Failakah Island averaged 96 kg/sir-day from June to September, with 61% of the catch being commercial species. In the southern area, catches averaged only 32 kg/sir-day and only 34% were commercially important. Forty percent of the hadrah catches were juveniles, which shows that Kuwait’s shallow intertidal waters, particularly in Kuwait Bay, served as prime nursery habitat,. To maintain ecosystem biodiversity and recruitment success of the fishes, we recommended that all hadrah should be removed from Kuwait Bay. In the future, removal of hadrah from other locations should be considered.

Investigation of Thermal and Mechanical Loading on Functional Graded Material Plates

This paper interested in the mechanical deformation behavior of shear deformable functionally graded ceramic-metal (FGM) plates. Theoretical formulations are based on power law theory when build up functional graded material. The mechanical properties of the plate are graded in the thickness direction according to a power-law Displacement and stress is obtained using finite element method (FEM). The load is supposed to be a uniform distribution over the plate surface (XY plane) and varied in the thickness direction only. An FGM’s gradation in material properties allows the designer to tailor material response to meet design criteria. An FGM made of ceramic and metal can provide the thermal protection and load carrying capability in one material thus eliminating the problem of thermo-mechanical deformation behavior. This thesis will explore analysis of FGM flat plates and shell panels, and their applications to r structural problems. FGMs are first characterized as flat plates under pressure in order to understand the effect variation of material properties has on structural response. In addition, results are compared to published results in order to show the accuracy of modeling FGMs using ABAQUS software.