Investigation and Calculation of Seismic Reliability of Structures

Recently, analysis and designing of the structures based on the Reliability theory have been the center of attention. Reason of this attention is the existence of the natural and random structural parameters such as the material specification, external loads, geometric dimensions etc. By means of the Reliability theory, uncertainties resulted from the statistical nature of the structural parameters can be changed into the mathematical equations and the safety and operational considerations can be considered in the designing process. According to this theory, it is possible to study the destruction probability of not only a specific element but also the entire system. Therefore, after being assured of safety of every element, their reciprocal effects on the safety of the entire system can be investigated.

Effective Design Parameters on the End Effect in Single-Sided Linear Induction Motors

Linear induction motors are used in various industries but they have some specific phenomena which are the causes for some problems. The most important phenomenon is called end effect. End effect decreases efficiency, power factor and output force and unbalances the phase currents. This phenomenon is more important in medium and high speeds machines. In this paper a factor, EEF , is obtained by an accurate equivalent circuit model, to determine the end effect intensity. In this way, all of effective design parameters on end effect is described. Accuracy of this equivalent circuit model is evaluated by two dimensional finite-element analysis using ANSYS. The results show the accuracy of the equivalent circuit model.

Design of PI Controller Using MRAC Techniques For Couple-Tanks Process

The typical coupled-tanks process that is TITO plant has the difficulty in controller design because changing of system dynamics and interacting of process. This paper presents design methodology of auto-adjustable PI controller using MRAC technique. The proposed method can adjust the controller parameters in response to changes in plant and disturbance real time by referring to the reference model that specifies properties of the desired control system.

Cannabidiol Treatment Ameliorates Acetaminophen-Induced Hepatotoxicity in Mice

The possible therapeutic effect of cannabidiol, the major non-psychotropic Cannabis constituent, was investigated against acute hepatotoxicity induced by a single oral dose of acetaminophen (500mg/kg) in mice. Cannabidiol (two intraperitoneal injections, 5mg/kg, each) was given 1 hour and 12 hours following acetaminophen administration. Acetaminophen administration caused significant elevations of serum alanine aminotransferase, and hepatic malondialdehyde, and nitric oxide levels, and a significant decrease in hepatic reduced glutathione. Cannabidiol significantly attenuated the deterioration in the measured biochemical parameters resulted from acetaminophen administration. Also, histopathological examination showed that cannabidiol markedly attenuated ameliorated acetaminophen-induced liver tissue damage. These results emphasize that cannabidiol represents a potential therapeutic option to protect against acetaminophen hepartotoxicity which is a common clinical problem.

On 6-Figures in Finite Klingenberg Planes of Parameters (p2k-1, p)

In this paper, we deal with finite projective Klingenberg plane M (A) coordinatized by local ring A := Zq+Zq E (where prime power q = p', e0 Z q and 62 = 0). So, we get some combinatorical results on 6-figures. For example, we show that there exist p — 1 6-figure classes in M(A).

A Multi-Agent Framework for Data Mining

A generic and extendible Multi-Agent Data Mining (MADM) framework, MADMF (the Multi-Agent Data Mining Framework) is described. The central feature of the framework is that it avoids the use of agreed meta-language formats by supporting a framework of wrappers. The advantage offered is that the framework is easily extendible, so that further data agents and mining agents can simply be added to the framework. A demonstration MADMF framework is currently available. The paper includes details of the MADMF architecture and the wrapper principle incorporated into it. A full description and evaluation of the framework-s operation is provided by considering two MADM scenarios.

Using Low Permeability Sand-Fadr Mixture Membrane for Isolated Swelling Soil

Desert regions around the Nile valley in Upper Egypt contain great extent of swelling soil. Many different comment procedures of treatment of the swelling soils for construction such as pre-swelling, load balance OR soil replacement. One of the measure factors which affect the level of the aggressiveness of the swelling soil is the direction of the infiltration water directions within the swelling soils. In this paper a physical model was installed to measure the effect of water on the swelling soil with replacement using fatty acid distillation residuals (FADR) mixed with sand as thick sand-FADR mixture to prevent the water pathway arrive to the swelling soil. Testing program have been conducted on different artificial samples with different sand to FADR contents ratios (4%, 6%, and 9%) to get the optimum value fulfilling the impermeable replacement. The tests show that a FADR content of 9% is sufficient to produce impermeable replacement.

Influence of Bentonite Additive on Bitumen and Asphalt Mixture Properties

Asphalt surfaces are exposed to various weather conditions and dynamic loading caused by passing trucks and vehicles. In such situations, asphalt cement shows so different rheological-mechanical behavior. If asphalt cement isn-t compatible enough, asphalt layer will be damaged immediately and expensive repairing procedures should be performed then. To overcome this problem, researchers study on mechanical improved asphalt cement. In this study, bentonite was used in order to modify bitumen characteristics and the modified bitumen's characteristics were investigated by asphalt cement tests. Then, the optimal bitumen content in various compounds was determined and asphalt samples with different contents of additives were prepared and tested. Results show using this kind of additive not only has caused improvement in bitumen mechanical properties, but also improvement in Marshall Parameters was achieved.

Kinematic Analysis of Roll Motion for a Strut/SLA Suspension System

The roll center is one of the key parameters for designing a suspension. Several driving characteristics are affected significantly by the migration of the roll center during the suspension-s motion. The strut/SLA (strut/short-long-arm) suspension, which is widely used in production cars, combines the space-saving characteristics of a MacPherson strut suspension with some of the preferred handling characteristics of an SLA suspension. In this study, a front strut/SLA suspension is modeled by ADAMS/Car software. Kinematic roll analysis is then employed to investigate how the rolling characteristics change under the wheel travel and steering input. The related parameters, including the roll center height, roll camber gain, toe change, scrub radius and wheel track width change, are analyzed and discussed. It is found that the strut/SLA suspension clearly has a higher roll center than strut and SLA suspensions do. The variations in the roll center height under roll analysis are very different as the wheel travel displacement and steering angle are added. The results of the roll camber gain, scrub radius and wheel track width change are considered satisfactory. However, the toe change is too large and needs fine-tuning through a sensitivity analysis.

Effects of Hidden Unit Sizes and Autoregressive Features in Mental Task Classification

Classification of electroencephalogram (EEG) signals extracted during mental tasks is a technique that is actively pursued for Brain Computer Interfaces (BCI) designs. In this paper, we compared the classification performances of univariateautoregressive (AR) and multivariate autoregressive (MAR) models for representing EEG signals that were extracted during different mental tasks. Multilayer Perceptron (MLP) neural network (NN) trained by the backpropagation (BP) algorithm was used to classify these features into the different categories representing the mental tasks. Classification performances were also compared across different mental task combinations and 2 sets of hidden units (HU): 2 to 10 HU in steps of 2 and 20 to 100 HU in steps of 20. Five different mental tasks from 4 subjects were used in the experimental study and combinations of 2 different mental tasks were studied for each subject. Three different feature extraction methods with 6th order were used to extract features from these EEG signals: AR coefficients computed with Burg-s algorithm (ARBG), AR coefficients computed with stepwise least square algorithm (ARLS) and MAR coefficients computed with stepwise least square algorithm. The best results were obtained with 20 to 100 HU using ARBG. It is concluded that i) it is important to choose the suitable mental tasks for different individuals for a successful BCI design, ii) higher HU are more suitable and iii) ARBG is the most suitable feature extraction method.

Identification of Arousal and Relaxation by using SVM-Based Fusion of PPG Features

In this paper, we propose a new method to distinguish between arousal and relaxation states by using multiple features acquired from a photoplethysmogram (PPG) and support vector machine (SVM). To induce arousal and relaxation states in subjects, 2 kinds of sound stimuli are used, and their corresponding biosignals are obtained using the PPG sensor. Two features–pulse to pulse interval (PPI) and pulse amplitude (PA)–are extracted from acquired PPG data, and a nonlinear classification between arousal and relaxation is performed using SVM. This methodology has several advantages when compared with previous similar studies. Firstly, we extracted 2 separate features from PPG, i.e., PPI and PA. Secondly, in order to improve the classification accuracy, SVM-based nonlinear classification was performed. Thirdly, to solve classification problems caused by generalized features of whole subjects, we defined each threshold according to individual features. Experimental results showed that the average classification accuracy was 74.67%. Also, the proposed method showed the better identification performance than the single feature based methods. From this result, we confirmed that arousal and relaxation can be classified using SVM and PPG features.

Urban Transformations of the Mediterranean Cities in Light of Developments in the Modern Era

The urban transformation processes in its framework and its general significance became a fundamental and vital subject of consideration for both the developed and the developing societies. It has become important to regulate the architectural systems adopted by the city, to sustain the present development on one hand, and on the other hand, to facilitate its future growth. Thus, the study dealt with the phenomenon of urban transformation of the Mediterranean cities, and the city of Alexandria in particular, because of its significant historical and cultural legacy, its historical architecture and its contemporary urbanization. This article investigates the entirety of cities in the Mediterranean region through the analysis of the relationship between inflation and growth of these cities and the extent of the complexity of the city barriers. We hope to analyze not only the internal transformations, but the external relationships (both imperial and post-colonial) that have shaped Alexandria city growth from the nineteenth century until today.

Integrated Approach of Development Communication

Internet application in China has maintained a constant development tendency in the past decade. China is now one of the most populous countries in terms of internet user population. While offering enormous opportunities, the dramatic digitalization also brings about a series of challenges that demand urgent attention. Digital divide is one of the challenges that affect China as well as other countries in the world. This paper examines digital divide in the Chinese context from the perspective of development communication. Through a case study of a rural township under the backdrop of the rapid internet development in China, the paper discusses the economic, psychological and cultural roots of digital divide; and explores development communication strategies addressing the roots of digital divide. It is argued that development communication must be responsive to the potentialities and preferences of the specific society and serve the purposes of participation and sustainability.

Power System Security Assessment using Binary SVM Based Pattern Recognition

Power System Security is a major concern in real time operation. Conventional method of security evaluation consists of performing continuous load flow and transient stability studies by simulation program. This is highly time consuming and infeasible for on-line application. Pattern Recognition (PR) is a promising tool for on-line security evaluation. This paper proposes a Support Vector Machine (SVM) based binary classification for static and transient security evaluation. The proposed SVM based PR approach is implemented on New England 39 Bus and IEEE 57 Bus systems. The simulation results of SVM classifier is compared with the other classifier algorithms like Method of Least Squares (MLS), Multi- Layer Perceptron (MLP) and Linear Discriminant Analysis (LDA) classifiers.

Automatic Discrimimation of the Modes of Permanent Flow of a Liquid Simulating Blood

In order to be able to automatically differentiate between two modes of permanent flow of a liquid simulating blood, it was imperative to put together a data bank. Thus, the acquisition of the various amplitude spectra of the Doppler signal of this liquid in laminar flow and other spectra in turbulent flow enabled us to establish an automatic difference between the two modes. According to the number of parameters and their nature, a comparative study allowed us to choose the best classifier.

Aspect based Reusable Synchronization Schemes

Concurrency and synchronization are becoming big issues as every new PC comes with multi-core processors. A major reason for Object-Oriented Programming originally was to enable easier reuse: encode your algorithm into a class and thoroughly debug it, then you can reuse the class again and again. However, when we get to concurrency and synchronization, this is often not possible. Thread-safety issues means that synchronization constructs need to be entangled into every class involved. We contributed a detailed literature review of issues and challenges in concurrent programming and present a methodology that uses the Aspect- Oriented paradigm to address this problem. Aspects will allow us to extract the synchronization concerns as schemes to be “weaved in" later into the main code. This allows the aspects to be separately tested and verified. Hence, the functional components can be weaved with reusable synchronization schemes that are robust and scalable.

Scenario Analysis of Indonesia's Energy Security by using a System-Dynamics Approach

Due to rapid economic growth, Indonesia's energy needs is rapidly increasing. Indonesia-s primary energy consumption has doubled in 2007 compared to 2003. Indonesia's status change from oil net-exporter to oil net-importer country recently has increased Indonesia's concern over energy security. Due to this, oil import becomes center of attention in the dynamics of Indonesia's energy security. Conventional studies addressing Indonesia's energy security have focused on energy production sector. This study explores Indonesia-s energy security considering energy import sector by modeling and simulating Indonesia-s energy-related policies using system dynamics. Simulation result of Indonesia's energy security in 2020 in Business-As-Usual scenario shows that in term of supply demand ratio, energy security will be very high, but also it poses high dependence on energy import. The Alternative scenario result shows lower energy security in term of supply demand ratio and much lower dependence on energy import. It is also found that the Alternative scenario produce lower GDP growth.

Analysis of Short Bearing in Turbulent Regime Considering Micropolar Lubrication

The aim of the paper work is to investigate and predict the static performance of journal bearing in turbulent flow condition considering micropolar lubrication. The Reynolds equation has been modified considering turbulent micropolar lubrication and is solved for steady state operations. The Constantinescu-s turbulence model is adopted using the coefficients. The analysis has been done for a parallel and inertia less flow. Load capacity and friction factor have been evaluated for various operating parameters.

Sensorless Control of a Six-Phase Induction Motors Drive Using FOC in Stator Flux Reference Frame

In this paper, a direct torque control - space vector modulation (DTC-SVM) scheme is presented for a six-phase speed and voltage sensorless induction motor (IM) drive. The decoupled torque and stator flux control is achieved based on IM stator flux field orientation. The rotor speed is detected by on-line estimating of the rotor angular slip speed and stator vector flux speed. In addition, a simple method is introduced to estimate the stator resistance. Moreover in this control scheme the voltage sensors are eliminated and actual motor phase voltages are approximated by using PWM inverter switching times and the dc link voltage. Finally, some simulation and experimental results are presented to verify the effectiveness and capability of the proposed control scheme.

Properties of SMA Mixtures Containing Waste Polyethylene Terephthalate

Utilization of waste material in asphalt pavement would be beneficial in order to find an alternative solution to increase service life of asphalt pavement and reduce environmental pollution as well. One of these waste materials is Polyethylene Terephthalate (PET) which is a type of polyester material and is produced in a large extent. This research program is investigating the effects of adding waste PET particles into the asphalt mixture with a maximum size of 2.36 mm. Different percentages of PET were added into the mixture during dry process. Gap-graded mixture (SMA 14) and PG 80-100 asphalt binder have been used for this study. To evaluate PET reinforced asphalt mixture different laboratory investigations have been conducted on specimens. Marshall Stability test was carried out. Besides, stiffness modulus test and indirect tensile fatigue test were conducted on specimens at optimum asphalt content. It was observed that in many cases PET reinforced SMA mixture had better mechanical properties in comparison with control mixture.