The Surface Adsorption of Nano-pore Template

This paper aims to fabricated high quality anodic aluminum oxide (AAO) film by anodization method. AAO pore size, pore density, and film thickness can be controlled in 10~500 nm, 108~1011 pore.cm-2, and 1~100 μm. AAO volume and surface area can be computed based on structural parameters such as thickness, pore size, pore density, and sample size. Base on the thetorical calculation, AAO has 100 μm thickness with 15 nm, 60 nm, and 500 nm pore diameters AAO surface areas are 1225.2 cm2, 3204.4 cm2, and 549.7 cm2, respectively. The large unit surface area which is useful for adsorption application. When AAO adsorbed pH indictor of bromphenol blue presented a sensitive pH detection of solution change. This testing method can further be used for the precise measurement of biotechnology, convenience measurement of industrial engineering.

The Effects of Extracorporeal Shockwave Therapy on Pain, Function, Range of Motion, and Strength in Patients with Insertional Achilles Tendinosis

Increased physical fitness participation has been paralleled by increasedoveruse injuries such as insertional Achilles tendinosis (AT). Treatment has provided inconsistentresults. The use of extracorporeal shockwave therapy (ECSWT) offers a new treatment consideration.The purpose of this study was to assess the effects of ECSWTon pain, function, range of motion (ROM), joint mobility and strength in patients with AT. Thirty subjects were treated with ECSWT and measures were takenbefore and three months after treatment. There was significant differences in visual analog scale (VAS) scores for pain at rest (p=0.002); after activity (p= 0.0001); overall improvement(p=0.0001); Lower Extremity Functional Scale (LEFS) scores (p=0.002); dorsiflexion range of motion (ROM) (p=0.0001); plantarflexion strength (p=0.025); talocrural joint anterior glide (p=0.046); and subtalar joint medial and lateral glide (p=0.025).ECSWT offers a new intervention that may limit the progression of the disorder and the long term healthcare costs associated with AT.

Discrimination of Seismic Signals Using Artificial Neural Networks

The automatic discrimination of seismic signals is an important practical goal for earth-science observatories due to the large amount of information that they receive continuously. An essential discrimination task is to allocate the incoming signal to a group associated with the kind of physical phenomena producing it. In this paper, two classes of seismic signals recorded routinely in geophysical laboratory of the National Center for Scientific and Technical Research in Morocco are considered. They correspond to signals associated to local earthquakes and chemical explosions. The approach adopted for the development of an automatic discrimination system is a modular system composed by three blocs: 1) Representation, 2) Dimensionality reduction and 3) Classification. The originality of our work consists in the use of a new wavelet called "modified Mexican hat wavelet" in the representation stage. For the dimensionality reduction, we propose a new algorithm based on the random projection and the principal component analysis.

Decoupled Scheduling in Meta Environment

Grid scheduling is the process of mapping grid jobs to resources over multiple administrative domains. Traditionally, application-level schedulers have been tightly integrated with the application itself and were not easily applied to other applications. This design is generic that decouples the scheduler core (the search procedure) from the application-specific (e.g. application performance models) and platform-specific (e.g. collection of resource information) components used by the search procedure. In this decoupled approach the application details are not revealed completely to broker, but customer will give the application to resource provider for execution. In a decoupled approach, apart from scheduling, the resource selection can be performed independently in order to achieve scalability.

Making India a Telecom Manufacturing Hub: Emerging Issues and Challenges

Indian telecom services industry has been witnessing a stupendous growth since 1990s. Over the years, subscriber base has grown steadily and it crossed 950 million marks in March 2012. India with second largest subscriber base also offers one of the lowest call tariffs in the world. But in the euphoria of high growth in services, the equipment manufacturing received least priority. India mainly depends on imported components from China. Of late, it is realized that lack of domestic manufacturing may pose a serious challenge to India-s continued success in the telecom sector. Therefore, the National Telecom Policy 2012 aims at developing a strong equipment manufacturing base within India. This paper realistically assesses India-s true potential in equipment manufacturing and seeks to identify the emerging issues and challenges before the Indian telecom equipment manufacturing sector while it tries to make a transition from an import-dependent industry to a global manufacturing hub.

Development of Manufacturing Simulation Model for Semiconductor Fabrication

This research presents the development of simulation modeling for WIP management in semiconductor fabrication. Manufacturing simulation modeling is needed for productivity optimization analysis due to the complex process flows involved more than 35 percent re-entrance processing steps more than 15 times at same equipment. Furthermore, semiconductor fabrication required to produce high product mixed with total processing steps varies from 300 to 800 steps and cycle time between 30 to 70 days. Besides the complexity, expansive wafer cost that potentially impact the company profits margin once miss due date is another motivation to explore options to experiment any analysis using simulation modeling. In this paper, the simulation model is developed using existing commercial software platform AutoSched AP, with customized integration with Manufacturing Execution Systems (MES) and Advanced Productivity Family (APF) for data collections used to configure the model parameters and data source. Model parameters such as processing steps cycle time, equipment performance, handling time, efficiency of operator are collected through this customization. Once the parameters are validated, few customizations are made to ensure the prior model is executed. The accuracy for the simulation model is validated with the actual output per day for all equipments. The comparison analysis from result of the simulation model compared to actual for achieved 95 percent accuracy for 30 days. This model later was used to perform various what if analysis to understand impacts on cycle time and overall output. By using this simulation model, complex manufacturing environment like semiconductor fabrication (fab) now have alternative source of validation for any new requirements impact analysis.

Effectiveness of Dominant Color Descriptor Technique in Medical Image Retrieval Application

This paper presents a dominant color descriptor technique for medical image retrieval. The medical image system will collect and store into medical database. The purpose of dominant color descriptor (DCD) technique is to retrieve medical image and to display similar image using queried image. First, this technique will search and retrieve medical image based on keyword entered by user. After image is found, the system will assign this image as a queried image. DCD technique will calculate the image value of dominant color. Then, system will search and retrieve again medical image based on value of dominant color query image. Finally, the system will display similar images with the queried image to user. Simple application has been developed and tested using dominant color descriptor. Result based on experiment indicates this technique is effective and can be used for medical image retrieval.

Effect of Uneven Surface on Magnetic Properties of Fe-based Amorphous Power Transformer

This study reports the preparation of soft magnetic ribbons of Fe-based amorphous alloys using the single-roller melt-spinning technique. Ribbon width varied from 142 mm to 213 mm and, with a thickness of approximately 22 μm ± 2 μm. The microstructure and magnetic properties of the ribbons were characterized by differential scanning calorimeter (DSC), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), and electrical resistivity measurements (ERM). The amorphous material properties dependence of the cooling rate and nozzle pressure have uneven surface in ribbon thicknesses are investigated. Magnetic measurement results indicate that some region of the ribbon exhibits good magnetic properties, higher saturation induction and lower coercivity. However, due to the uneven surface of 213 mm wide ribbon, the magnetic responses are not uniformly distributed. To understand the transformer magnetic performances, this study analyzes the measurements of a three-phase 2 MVA amorphous-cored transformer. Experimental results confirm that the transformer with a ribbon width of 142 mm has better magnetic properties in terms of lower core loss, exciting power, and audible noise.

Hair Mechanical Properties Depending on Age and Origin

Hair is a non homogenous complex material which can be associated with a polymer. It is made up 95% of Keratin. Hair has a great social significance for human beings. In the High Middle Ages, for example, long hairs have been reserved for kings and nobles. Most common interest in hair is focused on hair growth, hair types and hair care, but hair is also an important biomaterial which can vary depending on ethnic origin or on age, hair colour for example can be a sign of ethnic ancestry or age (dark hair for Asiatic, blond hair for Caucasian and white hair for old people in general). In this context, different approaches have been conducted to determine the differences in mechanical properties and characterize the fracture topography at the surface of hair depending on its type and its age. A tensile testing machine was especially designed to achieve tensile tests on hair. This device is composed of a microdisplacement system and a force sensor whose peak load is limited to 3N. The curves and the values extracted from each experiment, allow us to compare the evolution of the mechanical properties from one hair to another. Observations with a Scanning Electron Microscope (SEM) and with an interferometer were made on different hairs. Thus, it is possible to access the cuticle state and the fracture topography for each category.

Regret, Choice, and Outcome

In two studies we challenged the well consolidated position in regret literature according to which the necessary condition for the emergence of regret is a bad outcome ensuing from free decisions. Without free choice, and, consequently, personal responsibility, other emotions, such as disappointment, but not regret, are supposed to be elicited. In our opinion, a main source of regret is being obliged by circumstance out of our control to chose an undesired option. We tested the hypothesis that regret resulting from a forced choice is more intense than regret derived from a free choice and that the outcome affects the latter, not the former. Besides, we investigated whether two other variables – the perception of the level of freedom of the choice and the choice justifiability – mediated the relationships between choice and regret, as well as the other four emotions we examined: satisfaction, anger toward oneself, disappointment, anger towards circumstances. The two studies were based on the scenario methodology and implied a 2 x 2 (choice x outcome) between design. In the first study the foreseen short-term effects of the choice were assessed; in the second study the experienced long-term effects of the choice were assessed. In each study 160 students of the Second University of Naples participated. Results largely corroborated our hypotheses. They were discussed in the light of the main theories on regret and decision making.

Improving Academic Performance Prediction using Voting Technique in Data Mining

In this paper we compare the accuracy of data mining methods to classifying students in order to predicting student-s class grade. These predictions are more useful for identifying weak students and assisting management to take remedial measures at early stages to produce excellent graduate that will graduate at least with second class upper. Firstly we examine single classifiers accuracy on our data set and choose the best one and then ensembles it with a weak classifier to produce simple voting method. We present results show that combining different classifiers outperformed other single classifiers for predicting student performance.

Corporate Social Responsibility and Values in Innovation Management

Corporate social responsibility (CSR) viewpoint have challenged the traditional perception to understand corporations position. Production- and managerial-centred views are expanding towards reference group-centred policies. Consequently, the significance of new kind of knowledge has emerged. In addition to management of the organisation, the idea of CSR emphasises the importance to recognise the value-expectations of operational environment. It is know that management is often well-aware of corporate social responsibilities, but it is less clear how well these high level goals are understood in practical product design and development work. In this study, the apprehension above proved to be real to some degree. While management was very aware of CSR it was less familiar to designers. The outcome shows that it is essential to raise ethical values and issues higher in corporate communication, if it is wished that they materialize also in products.

Induced Graphoidal Covers in a Graph

An induced graphoidal cover of a graph G is a collection ψ of (not necessarily open) paths in G such that every path in ψ has at least two vertices, every vertex of G is an internal vertex of at most one path in ψ, every edge of G is in exactly one path in ψ and every member of ψ is an induced cycle or an induced path. The minimum cardinality of an induced graphoidal cover of G is called the induced graphoidal covering number of G and is denoted by ηi(G) or ηi. Here we find induced graphoidal cover for some classes of graphs.

ABURAS Index: A Statistically Developed Index for Dengue-Transmitting Vector Population Prediction

“Dengue" is an African word meaning “bone breaking" because it causes severe joint and muscle pain that feels like bones are breaking. It is an infectious disease mainly transmitted by female mosquito, Aedes aegypti, and causes four serotypes of dengue viruses. In recent years, a dramatic increase in the dengue fever confirmed cases around the equator-s belt has been reported. Several conventional indices have been designed so far to monitor the transmitting vector populations known as House Index (HI), Container Index (CI), Breteau Index (BI). However, none of them describes the adult mosquito population size which is important to direct and guide comprehensive control strategy operations since number of infected people has a direct relationship with the vector density. Therefore, it is crucial to know the population size of the transmitting vector in order to design a suitable and effective control program. In this context, a study is carried out to report a new statistical index, ABURAS Index, using Poisson distribution based on the collection of vector population in Jeddah Governorate, Saudi Arabia.

Design and Development of an MPH Program for Distance Education Delivery

The Master-s of Public Health (MPH) degree is growing in popularity among a number of higher education institutions throughout the world as a distance education graduate program. This paper offers an overview of program design and development strategies that promote successful distance delivery of MPH programs. Design and development challenges are discussed in terms of type of distance delivery, accreditation, student demand, faculty development, user needs, course content, and marketing strategies. The ongoing development of a distance education MPH program at Utah State University will be used to highlight and consider various aspects of this important but challenging process.

Image Transmission via Iterative Cellular-Turbo System

To compress, improve bit error performance and also enhance 2D images, a new scheme, called Iterative Cellular-Turbo System (IC-TS) is introduced. In IC-TS, the original image is partitioned into 2N quantization levels, where N is denoted as bit planes. Then each of the N-bit-plane is coded by Turbo encoder and transmitted over Additive White Gaussian Noise (AWGN) channel. At the receiver side, bit-planes are re-assembled taking into consideration of neighborhood relationship of pixels in 2-D images. Each of the noisy bit-plane values of the image is evaluated iteratively using IC-TS structure, which is composed of equalization block; Iterative Cellular Image Processing Algorithm (ICIPA) and Turbo decoder. In IC-TS, there is an iterative feedback link between ICIPA and Turbo decoder. ICIPA uses mean and standard deviation of estimated values of each pixel neighborhood. It has extra-ordinary satisfactory results of both Bit Error Rate (BER) and image enhancement performance for less than -1 dB Signal-to-Noise Ratio (SNR) values, compared to traditional turbo coding scheme and 2-D filtering, applied separately. Also, compression can be achieved by using IC-TS systems. In compression, less memory storage is used and data rate is increased up to N-1 times by simply choosing any number of bit slices, sacrificing resolution. Hence, it is concluded that IC-TS system will be a compromising approach in 2-D image transmission, recovery of noisy signals and image compression.

Retaining Structural System Active Vibration Control

This study presents an active vibration control technique to reduce the earthquake responses of a retained structural system. The proposed technique is a synthesis of the adaptive input estimation method (AIEM) and linear quadratic Gaussian (LQG) controller. The AIEM can estimate an unknown system input online. The LQG controller offers optimal control forces to suppress wall-structural system vibration. The numerical results show robust performance in the active vibration control technique.

Multi-objective Optimization with Fuzzy Based Ranking for TCSC Supplementary Controller to Improve Rotor Angle and Voltage Stability

Many real-world optimization problems involve multiple conflicting objectives and the use of evolutionary algorithms to solve the problems has attracted much attention recently. This paper investigates the application of multi-objective optimization technique for the design of a Thyristor Controlled Series Compensator (TCSC)-based controller to enhance the performance of a power system. The design objective is to improve both rotor angle stability and system voltage profile. A Genetic Algorithm (GA) based solution technique is applied to generate a Pareto set of global optimal solutions to the given multi-objective optimisation problem. Further, a fuzzy-based membership value assignment method is employed to choose the best compromise solution from the obtained Pareto solution set. Simulation results are presented to show the effectiveness and robustness of the proposed approach.

The Labeled Classification and its Application

This paper presents and evaluates a new classification method that aims to improve classifiers performances and speed up their training process. The proposed approach, called labeled classification, seeks to improve convergence of the BP (Back propagation) algorithm through the addition of an extra feature (labels) to all training examples. To classify every new example, tests will be carried out each label. The simplicity of implementation is the main advantage of this approach because no modifications are required in the training algorithms. Therefore, it can be used with others techniques of acceleration and stabilization. In this work, two models of the labeled classification are proposed: the LMLP (Labeled Multi Layered Perceptron) and the LNFC (Labeled Neuro Fuzzy Classifier). These models are tested using Iris, wine, texture and human thigh databases to evaluate their performances.

Study of the Oxidation Resistance of Coated AISI 441 Ferritic Stainless Steel for SOFCs

Protective coatings that resist oxide scale growth and decrease chromium evaporation are necessary to make stainless steel interconnect materials for long-term durable operation of solid oxide fuel cells (SOFCs). In this study a layer of cobalt was electroplated on the surface of AISI 441 ferritic stainless steel which is used in solid oxide fuel cells for interconnect applications. The oxidation behavior of coated substrates was studied as a function of time at operating conditions of SOFCs. Cyclic oxidation has been also tested at 800ºC for 100 cycles. Cobalt coating during isothermal oxidation caused to the oxide growth resistance by limiting the outward diffusion of Cr cation and the inward diffusion of oxygen anion. Results of cyclic oxidation exhibited that coated substrates demonstrate an excellent resistance against the spallation and cracking.