Global Exponential Stability of Impulsive BAM Fuzzy Cellular Neural Networks with Time Delays in the Leakage Terms

In this paper, a class of impulsive BAM fuzzy cellular neural networks with time delays in the leakage terms is formulated and investigated. By establishing a delay differential inequality and M-matrix theory, some sufficient conditions ensuring the existence, uniqueness and global exponential stability of equilibrium point for impulsive BAM fuzzy cellular neural networks with time delays in the leakage terms are obtained. In particular, a precise estimate of the exponential convergence rate is also provided, which depends on system parameters and impulsive perturbation intention. It is believed that these results are significant and useful for the design and applications of BAM fuzzy cellular neural networks. An example is given to show the effectiveness of the results obtained here.

Effect of Non Uniformity Factors and Assignment Factors on Errors in Charge Simulation Method with Point Charge Model

Charge Simulation Method (CSM) is one of the very widely used numerical field computation technique in High Voltage (HV) engineering. The high voltage fields of varying non uniformities are encountered in practice. CSM programs being case specific, the simulation accuracies heavily depend on the user (programmers) experience. Here is an effort to understand CSM errors and evolve some guidelines to setup accurate CSM models, relating non uniformities with assignment factors. The results are for the six-point-charge model of sphere-plane gap geometry. Using genetic algorithm (GA) as tool, optimum assignment factors at different non uniformity factors for this model have been evaluated and analyzed. It is shown that the symmetrically placed six-point-charge models can be good enough to set up CSM programs with potential errors less than 0.1% when the field non uniformity factor is greater than 2.64 (field utilization factor less than 52.76%).

Analysis of Physicochemical Properties on Prediction of R5, X4 and R5X4 HIV-1 Coreceptor Usage

Bioinformatics methods for predicting the T cell coreceptor usage from the array of membrane protein of HIV-1 are investigated. In this study, we aim to propose an effective prediction method for dealing with the three-class classification problem of CXCR4 (X4), CCR5 (R5) and CCR5/CXCR4 (R5X4). We made efforts in investigating the coreceptor prediction problem as follows: 1) proposing a feature set of informative physicochemical properties which is cooperated with SVM to achieve high prediction test accuracy of 81.48%, compared with the existing method with accuracy of 70.00%; 2) establishing a large up-to-date data set by increasing the size from 159 to 1225 sequences to verify the proposed prediction method where the mean test accuracy is 88.59%, and 3) analyzing the set of 14 informative physicochemical properties to further understand the characteristics of HIV-1coreceptors.

Quality of Non-Point Source Pollutant Identification using Digital Image and Remote Sensing Image

The integration between technology of remote sensing, information from the data of digital image, and modeling technology for the simulation of water quality will provide easiness during the observation on the quality of water changes on the river surface. For example, Ciliwung River which is contaminated with non-point source pollutant from household wastes, particularly on its downstream. This fact informed that the quality of water in this river is getting worse. The land use for settlements and housing ranges between 62.84% - 81.26% on the downstream of Ciliwung River, give a significant picture in seeing factors that affected the water quality of Ciliwung River.

Design of Permanent Magnet Machines with Different Rotor Type

This paper presents design, analysis and comparison of the different rotor type permanent magnet machines. The presented machines are designed as having same geometrical dimensions and same materials for comparison. The main machine parameters of interior and exterior rotor type machines including eddy current effect, torque-speed characteristics and magnetic analysis are investigated using MAXWELL program. With this program, the components of the permanent magnet machines can be calculated with high accuracy. Six types of Permanent machines are compared with respect to their topology, size, magnetic field, air gap flux, voltage, torque, loss and efficiency. The analysis results demonstrate the effectiveness of the proposed machines design methodology. We believe that, this study will be a helpful resource in terms of examination and comparison of the basic structure and magnetic features of the PM (Permanent magnet) machines which have different rotor structure.

Investigation of the Effect of Milling Time on the Mechanochemical Synthesis of Fe3Al/ Al2O3 Nanocomposite

In this study, the effect of mechanical activation on the synthesis of Fe3Al/Al2O3 nanocomposite has been investigated by using mechanochemical method. For this purpose, Aluminum powder and hematite as precursors, with stoichiometric ratio, have been utilized and other effective parameters in milling process were kept constant. Phase formation analysis, crystallite size measurement and lattice strain were studied by X-ray diffraction (XRD) by using Williamson-Hall method as well as microstructure and morphology were explored by Scanning electron microscopy (SEM). Also, Energy-dispersive X-ray spectroscopy (EDX) analysis was used in order to probe the particle distribution. The results showed that after 30-hour milling, the reaction was started, combustibly done and completed.

Technological Environment - International Marketing Strategy Relationship

International trade involves both large and small firms engaged in business overseas. Possible drivers that force companies to enter international markets include increasing competition at the domestic market, maturing domestic markets, and limited domestic market opportunities. Technology is an important driving factor in shaping international marketing strategy as well as in driving force towards a more global marketplace, especially technology in communication. It includes telephones, the internet, computer systems and e-mail. There are three main marketing strategy choices, namely standardization approach, adaptation approach and middleof- the-road approach that companies implement to overseas markets. The decision depends on situations and factors facing the companies in the international markets. In this paper, the contingency concept is considered that no single strategy can be effective in all contexts. The effect of strategy on performance depends on specific situational variables. Strategic fit is employed to investigate export marketing strategy adaptation under certain environmental conditions, which in turn can lead to superior performance.

Periodic Solutions in a Delayed Competitive System with the Effect of Toxic Substances on Time Scales

In this paper, the existence of periodic solutions of a delayed competitive system with the effect of toxic substances is investigated by using the Gaines and Mawhin,s continuation theorem of coincidence degree theory on time scales. New sufficient conditions are obtained for the existence of periodic solutions. The approach is unified to provide the existence of the desired solutions for the continuous differential equations and discrete difference equations. Moreover, The approach has been widely applied to study existence of periodic solutions in differential equations and difference equations.

Exploiting Two Intelligent Models to Predict Water Level: A Field Study of Urmia Lake, Iran

Water level forecasting using records of past time series is of importance in water resources engineering and management. For example, water level affects groundwater tables in low-lying coastal areas, as well as hydrological regimes of some coastal rivers. Then, a reliable prediction of sea-level variations is required in coastal engineering and hydrologic studies. During the past two decades, the approaches based on the Genetic Programming (GP) and Artificial Neural Networks (ANN) were developed. In the present study, the GP is used to forecast daily water level variations for a set of time intervals using observed water levels. The measurements from a single tide gauge at Urmia Lake, Northwest Iran, were used to train and validate the GP approach for the period from January 1997 to July 2008. Statistics, the root mean square error and correlation coefficient, are used to verify model by comparing with a corresponding outputs from Artificial Neural Network model. The results show that both these artificial intelligence methodologies are satisfactory and can be considered as alternatives to the conventional harmonic analysis.

Experimental teaching, Perceived usefulness, Ease of use, Learning Interest and Science Achievement of Taiwan 8th Graders in TIMSS 2007 Database

the data of Taiwanese 8th grader in the 4th cycle of Trends in International Mathematics and Science Study (TIMSS) are analyzed to examine the influence of the science teachers- preference in experimental teaching on the relationships between the affective variables ( the perceived usefulness of science, ease of using science and science learning interest) and the academic achievement in science. After dealing with the missing data, 3711 students and 145 science teacher-s data were analyzed through a Hierarchical Linear Modeling technique. The major objective of this study was to determine the role of the experimental teaching moderates the relationship between perceived usefulness and achievement.

Effect of Non-Newtonian Behaviour of Blood on Pulsatile Flows in Stenotic Arteries

In this paper, we study the pulsatile flow of blood through stenotic arteries. The inner layer of arterial walls is modeled as a porous medium and human blood is assumed as an incompressible fluid. A numerical algorithm based on the finite element method is developed to simulate the blood flow through both the lumen region and the porous wall. The algorithm is then applied to study the flow behaviour and to investigate the significance of the non-Newtonian effect.

Multi-matrix Real-coded Genetic Algorithm for Minimising Total Costs in Logistics Chain Network

The importance of supply chain and logistics management has been widely recognised. Effective management of the supply chain can reduce costs and lead times and improve responsiveness to changing customer demands. This paper proposes a multi-matrix real-coded Generic Algorithm (MRGA) based optimisation tool that minimises total costs associated within supply chain logistics. According to finite capacity constraints of all parties within the chain, Genetic Algorithm (GA) often produces infeasible chromosomes during initialisation and evolution processes. In the proposed algorithm, chromosome initialisation procedure, crossover and mutation operations that always guarantee feasible solutions were embedded. The proposed algorithm was tested using three sizes of benchmarking dataset of logistic chain network, which are typical of those faced by most global manufacturing companies. A half fractional factorial design was carried out to investigate the influence of alternative crossover and mutation operators by varying GA parameters. The analysis of experimental results suggested that the quality of solutions obtained is sensitive to the ways in which the genetic parameters and operators are set.

A Chaotic Study on Tremor Behavior of Parkinsonian Patients under Deep Brain Stimulation

Deep Brain Stimulation or DBS is a surgical treatment for Parkinson-s Disease with three stimulation parameters: frequency, pulse width, and voltage. The parameters should be selected appropriately to achieve effective treatment. This selection now, performs clinically. The aim of this research is to study chaotic behavior of recorded tremor of patients under DBS in order to present a computational method to recognize stimulation optimum voltage. We obtained some chaotic features of tremor signal, and discovered embedding space of it has an attractor, and its largest Lyapunov exponent is positive, which show tremor signal has chaotic behavior, also we found out, in optimal voltage, entropy and embedding space variance of tremor signal have minimum values in comparison with other voltages. These differences can help neurologists recognize optimal voltage numerically, which leads to reduce patients' role and discomfort in optimizing stimulation parameters and to do treatment with high accuracy.

Cultural Aspects Analyses in Sustainable Architecture

Social ideology, cultural values and principles shaping environment are inferred by environment and structural characteristics of construction site. In other words, this inference manifestation also indicates ideology and culture of its foundation and also applies its principles and values and somehow plays an important role in Cultural Revolution. All human behaviors and artifacts are affected and being influenced by culture. Culture is not abstract concept, it is a spiritual domain that an individual and society grow and develop in it. Social behaviors are affected by environmental comprehension, so the architecture work influences on its audience and it is the environment that fosters social behaviors. Indeed, sustainable architecture should be considered as background of culture for establishing optimal sustainable culture. Since unidentified architecture roots in cultural non identity and abnormalities, so the society possesses identity characteristics and life and as a consequence, the society and architecture are changed by transformation of life style. This article aims to investigate the interaction of architecture, society, environment and sustainable architecture formation in its cultural basis and analyzes the results approaching behavior and sustainable culture in recent era.

Conjugate Heat and Mass Transfer for MHD Mixed Convection with Viscous Dissipation and Radiation Effect for Viscoelastic Fluid past a Stretching Sheet

In this study, an analysis has been performed for conjugate heat and mass transfer of a steady laminar boundary-layer mixed convection of magnetic hydrodynamic (MHD) flow with radiation effect of second grade subject to suction past a stretching sheet. Parameters E Nr, Gr, Gc, Ec and Sc represent the dominance of the viscoelastic fluid heat and mass transfer effect which have presented in governing equations, respectively. The similar transformation and the finite-difference method have been used to analyze the present problem. The conjugate heat and mass transfer results show that the non-Newtonian viscoelastic fluid has a better heat transfer effect than the Newtonian fluid. The free convection with a larger r G or c G has a good heat transfer effect better than a smaller r G or c G , and the radiative convection has a good heat transfer effect better than non-radiative convection.

Q-Net: A Novel QoS Aware Routing Algorithm for Future Data Networks

The expectation of network performance from the early days of ARPANET until now has been changed significantly. Every day, new advancement in technological infrastructure opens the doors for better quality of service and accordingly level of perceived quality of network services have been increased over the time. Nowadays for many applications, late information has no value or even may result in financial or catastrophic loss, on the other hand, demands for some level of guarantee in providing and maintaining quality of service are ever increasing. Based on this history, having a QoS aware routing system which is able to provide today's required level of quality of service in the networks and effectively adapt to the future needs, seems as a key requirement for future Internet. In this work we have extended the traditional AntNet routing system to support QoS with multiple metrics such as bandwidth and delay which is named Q-Net. This novel scalable QoS routing system aims to provide different types of services in the network simultaneously. Each type of service can be provided for a period of time in the network and network nodes do not need to have any previous knowledge about it. When a type of quality of service is requested, Q-Net will allocate required resources for the service and will guarantee QoS requirement of the service, based on target objectives.

Virtual Environments...Vehicle for Pedagogical Advancement

Virtual environments are a hot topic in academia and more importantly in courses offered via distance education. Today-s gaming generation view virtual worlds as strong social and interactive mediums for communicating and socializing. And while institutions of higher education are challenged with increasing enrollment while balancing budget cuts, offering effective courses via distance education become a valid option. Educators can utilize virtual worlds to offer students an enhanced learning environment which has the power to alleviate feelings of isolation through the promotion of communication, interaction, collaboration, teamwork, feedback, engagement and constructivists learning activities. This paper focuses on the use of virtual environments to facilitate interaction in distance education courses so as to produce positive learning outcomes for students. Furthermore, the instructional strategies were reviewed and discussed for use in virtual worlds to enhance learning within a social context.

Use of Multiple Linear Regressions to Evaluate the Influence of O3 and PM10 on Biological Pollutants

Exposure to ambient air pollution has been linked to a number of health outcomes, starting from modest transient changes in the respiratory tract and impaired pulmonary function, continuing to restrict activity/reduce performance and to the increase emergency rooms visits, hospital admissions or mortality. The increase of allergenic symptoms has been associated with air contaminants such as ozone, particulate matter, fungal spores and pollen. Considering the potential relevance of crossed effects of nonbiological pollutants and airborne pollens and fungal spores on allergy worsening, the aim of this work was to evaluate the influence of non-biological pollutants (O3 and PM10) and meteorological parameters on the concentrations of pollen and fungal spores using multiple linear regressions. The data considered in this study were collected in Oporto which is the second largest Portuguese city, located in the North. Daily mean of O3, PM10, pollen and fungal spore concentrations, temperature, relative humidity, precipitation, wind velocity, pollen and fungal spore concentrations, for 2003, 2004 and 2005 were considered. Results showed that the 90th percentile of the adjusted coefficient of determination, P90 (R2aj), of the multiple regressions varied from 0.613 to 0.916 for pollen and from 0.275 to 0.512 for fungal spores. O3 and PM10 showed to have some influence on the biological pollutants. Among the meteorological parameters analysed, temperature was the one that most influenced the pollen and fungal spores airborne concentrations. Relative humidity also showed to have some influence on the fungal spore dispersion. Nevertheless, the models for each pollen and fungal spore were different depending on the analysed period, which means that the correlations identified as statistically significant can not be, even so, consistent enough.

Feeder Reconfiguration for Loss Reduction in Unbalanced Distribution System Using Genetic Algorithm

This paper presents an efficient approach to feeder reconfiguration for power loss reduction and voltage profile imprvement in unbalanced radial distribution systems (URDS). In this paper Genetic Algorithm (GA) is used to obtain solution for reconfiguration of radial distribution systems to minimize the losses. A forward and backward algorithm is used to calculate load flows in unbalanced distribution systems. By simulating the survival of the fittest among the strings, the optimum string is searched by randomized information exchange between strings by performing crossover and mutation. Results have shown that proposed algorithm has advantages over previous algorithms The proposed method is effectively tested on 19 node and 25 node unbalanced radial distribution systems.

An Overview of the Factors Affecting Microbial-Induced Calcite Precipitation and its Potential Application in Soil Improvement

Microbial-induced calcite precipitation (MICP) is a relatively green and sustainable soil improvement technique. It utilizes biochemical process that exists naturally in soil to improve engineering properties of soils. The calcite precipitation process is uplifted by the mean of injecting higher concentration of urease positive bacteria and reagents into the soil. The main objective of this paper is to provide an overview of the factors affecting the MICP in soil. Several factors were identified including nutrients, bacteria type, geometric compatibility of bacteria, bacteria cell concentration, fixation and distribution of bacteria in soil, temperature, reagents concentration, pH, and injection method. These factors were found to be essential for promoting successful MICP soil treatment. Furthermore, a preliminary laboratory test was carried out to investigate the potential application of the technique in improving the shear strength and impermeability of a residual soil specimen. The results showed that both shear strength and impermeability of residual soil improved significantly upon MICP treatment. The improvement increased with increasing soil density.