Enhanced Performance of Fading Dispersive Channel Using Dynamic Frequency Hopping(DFH)

techniques are examined to overcome the performance degradation caused by the channel dispersion using slow frequency hopping (SFH) with dynamic frequency hopping (DFH) pattern adaptation. In DFH systems, the frequency slots are selected by continuous quality monitoring of all frequencies available in a system and modification of hopping patterns for each individual link based on replacing slots which its signal to interference ratio (SIR) measurement is below a required threshold. Simulation results will show the improvements in BER obtained by DFH in comparison with matched frequency hopping (MFH), random frequency hopping (RFH) and multi-carrier code division multiple access (MC-CDMA) in multipath slowly fading dispersive channels using a generalized bandpass two-path transfer function model, and will show the improvement obtained according to the threshold selection.

Approximation Incremental Training Algorithm Based on a Changeable Training Set

The quick training algorithms and accurate solution procedure for incremental learning aim at improving the efficiency of training of SVR, whereas there are some disadvantages for them, i.e. the nonconvergence of the formers for changeable training set and the inefficiency of the latter for a massive dataset. In order to handle the problems, a new training algorithm for a changeable training set, named Approximation Incremental Training Algorithm (AITA), was proposed. This paper explored the reason of nonconvergence theoretically and discussed the realization of AITA, and finally demonstrated the benefits of AITA both on precision and efficiency.

Continual Improvement with Integrated Management System

Management Systems are powerful tools for businesses to manage quality , environmental and occupational health and safety requirements . where once these systems were considered as stand alone control mechanisms , industry is now opting to increase the efficiency of these documented systems through a more integrated approach . System integration offers a significant step forward, where there are similarities between system components , reducing duplication and adminstration costs and increasing efficiency . At first , this paper reviews integrated management system structure and its benefits. The second part of this paper focuses on the one example implementation of such a system at Imam Khomeini Hospital and in final part of the paper will be discuss outcomes of that proccess .

Plasma Density Distribution in Asymmetric Geometry Capacitive Coupled Plasma Discharge System

In this work, we used the single Langmuir probe to measure the plasma density distribution in an geometrically asymmetric capacitive coupled plasma discharge system. Because of the frame structure of powered electrode, the plasma density was not homogeneous in the discharge volume. It was higher under the frame, but lower in the centre. Finite element simulation results showed a good agreement with the experiment results. To increase the electron density in the central volume and improve the homogeneity of the plasma, we added an auxiliary electrode, powered by DC voltage, in the simulation geometry. The simulation results showed that the auxiliary electrode could alter the potential distribution and improve the density homogeneity effectively.

Determining the Gender of Korean Names for Pronoun Generation

It is an important task in Korean-English machine translation to classify the gender of names correctly. When a sentence is composed of two or more clauses and only one subject is given as a proper noun, it is important to find the gender of the proper noun for correct translation of the sentence. This is because a singular pronoun has a gender in English while it does not in Korean. Thus, in Korean-English machine translation, the gender of a proper noun should be determined. More generally, this task can be expanded into the classification of the general Korean names. This paper proposes a statistical method for this problem. By considering a name as just a sequence of syllables, it is possible to get a statistics for each name from a collection of names. An evaluation of the proposed method yields the improvement in accuracy over the simple looking-up of the collection. While the accuracy of the looking-up method is 64.11%, that of the proposed method is 81.49%. This implies that the proposed method is more plausible for the gender classification of the Korean names.

On the Existence and Global Attractivity of Solutions of a Functional Integral Equation

Using the concept of measure of noncompactness, we present some results concerning the existence, uniform local attractivity and global attractivity of solutions for a functional integral equation. Our results improve and extend some previous known results and based on weaker conditions. Some examples which show that our results are applicable when the previous results are inapplicable are also included.

Concept for a Multidisciplinary Design Process–An Application on High Lift Systems

Presents a concept for a multidisciplinary process supporting effective task transitions between different technical domains during the architectural design stage. A system configuration challenge is the multifunctional driven increased solution space. As a consequence, more iteration is needed to find a global optimum, i.e. a compromise between involved disciplines without negative impact on development time. Since state of the art standards like ISO 15288 and VDI 2206 do not provide a detailed methodology on multidisciplinary design process, higher uncertainties regarding final specifications arise. This leads to the need of more detailed and standardized concepts or processes which could mitigate risks. The performed work is based on analysis of multidisciplinary interaction, of modeling and simulation techniques. To demonstrate and prove the applicability of the presented concept, it is applied to the design of aircraft high lift systems, in the context of the engineering disciplines kinematics, actuation, monitoring, installation and structure design.

Using Interpretive Structural Modeling to Determine the Relationships among Knowledge Management Criteria inside Malaysian Organizations

This paper is concerned with the establishment of relationships among knowledge management (KM) criteria that will ensure an essential foundation to evaluate KM outcomes. The major issue under investigation is to assess the popularity of criteria within organizations and to establish a structure of criteria for measuring KM results. An empirical survey was conducted among Malaysian organizations to investigate KM criteria for measuring success of KM initiatives. Therefore, knowledge workers as the respondents were targeted to establish a structure of criteria for evaluating KM outcomes. An established structure of criteria based on the Interpretive Structural Modeling (ISM) is used to map criteria relationships inside organizations. This structure is portrayed to identify that how these set of criteria are related. This network schema should be investigated and implemented to promote innovation and improve enterprise performance. To the researchers, this survey has significant insights into relationship between KM programs and business success.

Computer - based Systems for High Speed Vessels Navigators – Engineers Training

With high speed vessels getting ever more sophisti-cated, travelling at higher and higher speeds and operating in With high speed vessels getting ever more sophisticated, travelling at higher and higher speeds and operating in areas of high maritime traffic density, training becomes of the highest priority to ensure that safety levels are maintained, and risks are adequately mitigated. Training onboard the actual craft on the actual route still remains the most effective way for crews to gain experience. However, operational experience and incidents during the last 10 years demonstrate the need for supplementary training whether in the area of simulation or man to man, man/ machine interaction. Training and familiarisation of the crew is the most important aspect in preventing incidents. The use of simulator, computer and web based training systems in conjunction with onboard training focusing on critical situations will improve the man machine interaction and thereby reduce the risk of accidents. Today, both ship simulator and bridge teamwork courses are now becoming the norm in order to improve further emergency response and crisis management skills. One of the main causes of accidents is the human factor. An efficient way to reduce human errors is to provide high-quality training to the personnel and to select the navigators carefully.areas of high maritime traffic density, training becomes of the highest priority to ensure that safety levels are maintained, and risks are adequately mitigated. Training onboard the actual craft on the actual route still remains the most effective way for crews to gain experience. How-ever, operational experience and incidents during the last 10 years demonstrate the need for supplementary training whether in the area of simulation or man to man, man/ machine interaction. Training and familiarisation of the crew is the most important aspect in preventing incidents. The use of simulator, computer and web based training systems in conjunction with onboard training focusing on critical situations will improve the man machine interaction and thereby reduce the risk of accidents. Today, both ship simulator and bridge teamwork courses are now becoming the norm in order to improve further emergency response and crisis management skills. One of the main causes of accidents is the human factor. An efficient way to reduce human errors is to provide high-quality training to the person-nel and to select the navigators carefully. KeywordsCBT - WBT systems, Human factors.

Removal of Copper and Zinc Ions onto Biomodified Palm Shell Activated Carbon

commercially produced in Malaysia granular palm shell activated carbon (PSAC) was biomodified with bacterial biomass (Bacillus subtilis) to produce a hybrid biosorbent of higher efficiency. The obtained biosorbent was evaluated in terms of adsorption capacity to remove copper and zinc metal ions from aqueous solutions. The adsorption capacity was evaluated in batch adsorption experiments where concentrations of metal ions varied from 20 to 350 mg/L. A range of pH from 3 to 6 of aqueous solutions containing metal ions was tested. Langmuir adsorption model was used to interpret the experimental data. Comparison of the adsorption data of the biomodified and original palm shell activated carbon showed higher uptake of metal ions by the hybrid biosorbent. A trend in metal ions uptake increase with the increase in the solution-s pH was observed. The surface characterization data indicated a decrease in the total surface area for the hybrid biosorbent; however the uptake of copper and zinc by it was at least equal to the original PSAC at pH 4 and 5. The highest capacity of the hybrid biosorbent was observed at pH 5 and comprised 22 mg/g and 19 mg/g for copper and zinc, respectively. The adsorption capacity at the lowest pH of 3 was significantly low. The experimental results facilitated identification of potential factors influencing the adsorption of copper and zinc onto biomodified and original palm shell activated carbon.

Impacts of Biofuels on Air Quality: Northern Portugal Case Study

The increased use of biodiesel implies variations on both greenhouse gases and air pollutant emissions. Some studies point out that the use of biodiesel blends on diesel can help in controlling air pollution and promote a reduction of CO2 emissions. Reductions on PM, SO2, VOC and CO emissions are also expected, however NOx emissions may increase, which may potentiate O3 formation. This work aims to assess the impact of the biodiesel use on air quality, through a numerical modeling study, taking the Northern region of Portugal as a case study. The emission scenarios are focused on 2008 (baseline year) and 2020 (target year of Renewable Energy Directive-RED) and on three biodiesel blends (B0, B10 and B20). In a general way the use of biodiesel by 2020 will reduce the CO2 and air pollutants emissions in the Northern Portugal, improving air quality. However it will be in a very small extension.

Application of HSA and GA in Optimal Placement of FACTS Devices Considering Voltage Stability and Losses

Voltage collapse is instability of heavily loaded electric power systems that cause to declining voltages and blackout. Power systems are predicated to become more heavily loaded in the future decade as the demand for electric power rises while economic and environmental concerns limit the construction of new transmission and generation capacity. Heavily loaded power systems are closer to their stability limits and voltage collapse blackouts will occur if suitable monitoring and control measures are not taken. To control transmission lines, it can be used from FACTS devices. In this paper Harmony search algorithm (HSA) and Genetic Algorithm (GA) have applied to determine optimal location of FACTS devices in a power system to improve power system stability. Three types of FACTS devices (TCPAT, UPFS, and SVC) have been introduced. Bus under voltage has been solved by controlling reactive power of shunt compensator. Also a combined series-shunt compensators has been also used to control transmission power flow and bus voltage simultaneously. Different scenarios have been considered. First TCPAT, UPFS, and SVC are placed solely in transmission lines and indices have been calculated. Then two types of above controller try to improve parameters randomly. The last scenario tries to make better voltage stability index and losses by implementation of three types controller simultaneously. These scenarios are executed on typical 34-bus test system and yields efficiency in improvement of voltage profile and reduction of power losses; it also may permit an increase in power transfer capacity, maximum loading, and voltage stability margin.

Modified Functional Link Artificial Neural Network

In this work, a Modified Functional Link Artificial Neural Network (M-FLANN) is proposed which is simpler than a Multilayer Perceptron (MLP) and improves upon the universal approximation capability of Functional Link Artificial Neural Network (FLANN). MLP and its variants: Direct Linear Feedthrough Artificial Neural Network (DLFANN), FLANN and M-FLANN have been implemented to model a simulated Water Bath System and a Continually Stirred Tank Heater (CSTH). Their convergence speed and generalization ability have been compared. The networks have been tested for their interpolation and extrapolation capability using noise-free and noisy data. The results show that M-FLANN which is computationally cheap, performs better and has greater generalization ability than other networks considered in the work.

Prediction of the Total Decay Heat from Fast Neutron Fission of 235U and 239Pu

The analytical prediction of the decay heat results from the fast neutron fission of actinides was initiated under a project, 10-MAT1134-3, funded by king Abdulaziz City of Science and Technology (KASCT), Long-Term Comprehensive National Plan for Science, Technology and Innovations, managed by a team from King Abdulaziz University (KAU), Saudi Arabia, and supervised by Argonne National Laboratory (ANL) has collaborated with KAU's team to assist in the computational analysis. In this paper, the numerical solution of coupled linear differential equations that describe the decays and buildups of minor fission product MFA, has been used to predict the total decay heat and its components from the fast neutron fission of 235U and 239Pu. The reliability of the present approach is illustrated via systematic comparisons with the measurements reported by the University of Tokyo, in YAYOI reactor.

Surgery Scheduling Using Simulation with Arena

The institutions seek to improve their performance and quality of service, so that their patients are satisfied. This research project aims, conduct a time study program in the area of gynecological surgery, to determine the current level of capacity and optimize the programming time in order to adequately respond to demand. The system is analyzed by waiting lines and uses the simulation using ARENA to evaluate proposals for improvement and optimization programming time each of the surgeries.

Improving Image Segmentation Performance via Edge Preserving Regularization

This paper presents an improved image segmentation model with edge preserving regularization based on the piecewise-smooth Mumford-Shah functional. A level set formulation is considered for the Mumford-Shah functional minimization in segmentation, and the corresponding partial difference equations are solved by the backward Euler discretization. Aiming at encouraging edge preserving regularization, a new edge indicator function is introduced at level set frame. In which all the grid points which is used to locate the level set curve are considered to avoid blurring the edges and a nonlinear smooth constraint function as regularization term is applied to smooth the image in the isophote direction instead of the gradient direction. In implementation, some strategies such as a new scheme for extension of u+ and u- computation of the grid points and speedup of the convergence are studied to improve the efficacy of the algorithm. The resulting algorithm has been implemented and compared with the previous methods, and has been proved efficiently by several cases.

Genetic Folding: Analyzing the Mercer-s Kernels Effect in Support Vector Machine using Genetic Folding

Genetic Folding (GF) a new class of EA named as is introduced for the first time. It is based on chromosomes composed of floating genes structurally organized in a parent form and separated by dots. Although, the genotype/phenotype system of GF generates a kernel expression, which is the objective function of superior classifier. In this work the question of the satisfying mapping-s rules in evolving populations is addressed by analyzing populations undergoing either Mercer-s or none Mercer-s rule. The results presented here show that populations undergoing Mercer-s rules improve practically models selection of Support Vector Machine (SVM). The experiment is trained multi-classification problem and tested on nonlinear Ionosphere dataset. The target of this paper is to answer the question of evolving Mercer-s rule in SVM addressed using either genetic folding satisfied kernel-s rules or not applied to complicated domains and problems.

Classification of Radio Communication Signals using Fuzzy Logic

Characterization of radio communication signals aims at automatic recognition of different characteristics of radio signals in order to detect their modulation type, the central frequency, and the level. Our purpose is to apply techniques used in image processing in order to extract pertinent characteristics. To the single analysis, we add several rules for checking the consistency of hypotheses using fuzzy logic. This allows taking into account ambiguity and uncertainty that may remain after the extraction of individual characteristics. The aim is to improve the process of radio communications characterization.

Applying Lean Principles, Tools and Techniques in Set Parts Supply Implementation

Lean, which was initially developed by Toyota, is widely implemented in other companies to improve competitiveness. This research is an attempt to identify the adoption of lean in the production system of Malaysian car manufacturer, Proton using case study approach. To gain the in-depth information regarding lean implementation, an activity on the assembly line called Set Parts Supply (SPS) was studied. The result indicates that by using lean principles, tools and techniques in the implementation of SPS enabled to achieve the goals on safety, quality, cost, delivery and morale. The implementation increased the size of the workspace, improved the quality of assembly and the delivery of parts supply, reduced the manpower, achieved cost savings on electricity and also increased the motivation of manpower in respect of attendance at work. A framework of SPS implementation is suggested as a contribution for lean practices in production system.

A New Particle Filter Inspired by Biological Evolution: Genetic Filter

In this paper, we consider a new particle filter inspired by biological evolution. In the standard particle filter, a resampling scheme is used to decrease the degeneracy phenomenon and improve estimation performance. Unfortunately, however, it could cause the undesired the particle deprivation problem, as well. In order to overcome this problem of the particle filter, we propose a novel filtering method called the genetic filter. In the proposed filter, we embed the genetic algorithm into the particle filter and overcome the problems of the standard particle filter. The validity of the proposed method is demonstrated by computer simulation.