Plasma Density Distribution in Asymmetric Geometry Capacitive Coupled Plasma Discharge System

In this work, we used the single Langmuir probe to measure the plasma density distribution in an geometrically asymmetric capacitive coupled plasma discharge system. Because of the frame structure of powered electrode, the plasma density was not homogeneous in the discharge volume. It was higher under the frame, but lower in the centre. Finite element simulation results showed a good agreement with the experiment results. To increase the electron density in the central volume and improve the homogeneity of the plasma, we added an auxiliary electrode, powered by DC voltage, in the simulation geometry. The simulation results showed that the auxiliary electrode could alter the potential distribution and improve the density homogeneity effectively.




References:
[1] M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges
and Materials Processing, (Wiley, New York), 2005, pp.327-328.
[2] T. Makabe and Z. Petrovic, Plasma Electronics: Applications in
Microelectronic Device Fabrication, (Taylor & Francis, Boca Raton, FL)
2006, pp.255-272.
[3] E. Kawamura, M. A. Lieberman, and A. J. Lichtenberg, "Capacitive
discharges driven by combined dc/rf sources", J. Vac. Sci. Technol. A.
vol. 25, 2007, pp.1456-1475.
[4] B. G. Heil, U. Czarnetzki, R. P. Brinkmann and T. Mussenbrock, "On the
possibility of making a geometrically symmetric RF-CCP discharge
electrically asymmetric", J. Phys. D: Appl. Phys. vol. 41, 2008,
pp.165202.
[5] J. W. Coburn and E. Kay, "Positive-ion bombardment of substrates in rf
diode glow discharge sputtering", J. Appl. Phys., vol.43, 1972, pp.4965-
4972.
[6] K. K¨ohler, J. W. Coburn, D. E. Horne, E. Kay, and H. Keller, "Plasma
potentials of 13.56-MHz rf argon glow discharges in a planar system", J.
Appl.Phys., vol.57, 1985, pp.59-67.
[7] M. A. Lieberman and S. E. Savas, "Bias voltage in finite length
cylindrical and coaxial radio-frequency discharges", J. Vac. Sci. Technol.
A., vol.8, 1990, pp.1632-1642.
[8] K. Radouane, B. Depsax M. Yousfi, J. P. Couderc, E. Klusmann, H.
Meyer, R. Schulz, and J.Schulze, "Two-dimensional electrical modeling
of asymmetric radio-frequency discharges for geometry effect analysis.
Comparison with experiments" J. Appl. Phys., vol.90, 2001, pp.4346-
4354.
[9] M. Mohamed Salem, and J. F. Loiseau, "Experiments to sort out
theoretical models concerning the area ratio law for plasma reactors", J.
Phys. D: Appl. Phys., vol.29, 1996, pp.1181-1187.
[10] Julian Schulze, Edmund Schngel, Uwe Czarnetzki, Markus Gebhardt,
Ralf Peter Brinkmann, and Thomas Mussenbrock, "Making a
geometrically asymmetric capacitive rf discharge electrically
symmetric", Appl. Phys. Lett., vol.98, 2011, pp.031501.
[11] V. A. Godyak, and R. B. Piejak, "Paradoxical spatial distribution of the
electron temperature in a low pressure rf discharge", Appl. Phys. Lett.,
vol.63, 1993, pp.3137-3139.
[12] Y.F. Li, W.G. Zhang, J.X. Ma, K. Jiang, H.M. Thomas and G.E. Morfill,
"Traveling electric field probed by a fine particle above voltagemodulated
strips in a striped electrode device", Phys. Plasmas, vol.17, 2010,
pp.033705.
[13] F.F. Chen, "Langmuir probes in RF plasma: surprising validity of OML
theory", Plasma Sources Sci. Technol., vol.18, 2009, pp.035012.
[14] F.F. Chen, "Time-varying impedance of the sheath on a probe in an RF
plasma", Plasma Sources Sci. Technol., vol.15, 2006, pp.773-782.
[15] J. M. Kriesela, and C. F. Driscoll, "Electron plasma profiles from a
cathode with an r 2 potential variation", Phys. Plasmas, vol.5, 1998,
pp.1265-1272.